Identification of a Speaker by Speech Spectrograms

Richard H. Bolt, Franklin S. Cooper, Edward E. David, Jr., Peter B. Denes, James M. Pickett, Kenneth N. Stevens
Identification of a Speaker by Speech Spectrograms

How do scientists view its reliability for use as legal evidence?

Richard H. Bolt, Franklin S. Cooper, Edward E. David, Jr., Peter B. Denes, James M. Pickett, Kenneth N. Stevens

The sound spectrograph is an instrument that finds widespread use in current research on speech sounds. It portrays, in graphical form, the time variations of the short-term spectrum of the speech wave (1). Examples of such speech spectrograms are shown in Fig. 1 for four instances of the word "science." In each spectrogram the horizontal dimension is time, the vertical dimension represents frequency, and the darkness represents intensity on a compressed scale. This representation of the sound patterns of speech has proved to be extremely powerful in research on the phonetic aspects of speech because the spectrogram gives valuable information about speech articulation. In the examples of Fig. 1, the middle portions of the patterns show effects of the articulations corresponding to the vowels of "science." The initial and final portions of each spectrogram show sudden changes in the frequency pattern where consonants and vowels join.

When two persons speak the same word, their articulation is similar but not identical; therefore, spectrograms of these words will be similar but not identical. There are also similarities and differences even when the same speaker repeats the same word. These facts are apparent in the spectrograms of Fig. 1. The two spectrograms at the top were made by the same speaker on two different occasions; the two spectrograms at the bottom were made by two other speakers.

Speech scientists have found spectrograms very useful in studying how people pronounce different words. Can spectrograms also be applied to distinguishing one person from another? In several recent court hearings, evidence has been presented both for and against the use of speech spectrograms, or "voiceprints," for personal identification. Scientists in speech research have been concerned, for reasons of social importance and scientific credibility, about such use of speech spectrograms; the Technical Committee on Speech Communication of the Acoustical Society of America asked six members of the Society (the authors of this article) to study and report on this issue (2). In considering the problem, we asked questions such as the following: When two voice spectrograms look alike, do the similarities mean "same speaker" or merely "same word spoken"? Are the irrelevant similarities likely to mislead a lay jury in assessing conflicting testimony from opposing experts? How permanent are voice patterns? How distinctive are they for the individual? Can they be successfully disguised or faked?

Whatever the future may hold for voiceprinting as a method of identification, expert witnesses at the present time do not agree as to its reliability, and various courts of law have ruled both for and against the admission of such evidence (3). These differences of opinion are, however, only the surface reflections of deep-lying difficulties, inherent in the nature of spoken language, that serve to make voice identification equivocal for the expert and confusing to the layman.

It is against this background that we have undertaken to point up the difficulties inherent in voice identification, to review and assess the relevant scientific knowledge available today, and to examine the problem of scientific validation for the use of voiceprint identification as legal evidence (4).
There will be many similarities because the same words were used; there will also be differences which may be due either to a difference in speakers, or to the free variations of a single speaker.

The correct assignment of the differences, given all these complexities, is a difficult matter. Yet we know that almost everyone can identify some voices just by listening to them. We know also, from controlled experiments, that identification by ear alone is not highly reliable (7).

A newer method of voice identification uses visual comparison of the graphic patterns resulting from a gross acoustic analysis using the sound spectrograph. Not all details of the acoustic patterns are presented in this graphic display; moreover, the display is designed to emphasize those features that characterize the words of the spoken message. Speech sound spectrograms of this type are the primary material used forensically for voice identification. The identification is done, not by the spectrograph, but by means of visual comparisons of the spectrograms and by subjective judgments about the identity of the speakers represented (see 8).

Could a better instrument be developed? One possibility would be a device with a display emphasizing those sound features that are most dependent on the speaker. The patterns could then be judged with greater confidence by human experts. We do not yet know how to design such an instrument primarily because of the inherent complexity of speech sounds. We are even farther from having a fully objective procedure by which the features that characterize an individual speaker could be extracted and evaluated automatically (9).

Voice Patterns and Fingerprint Patterns

How similar is voice identification by spectrogram to fingerprint identification? The differences between them seem to exceed the similarities, as the following comparative summary shows.

Fingerprints show directly the physical patterns of the fingers producing them, and these patterns are readily discernible. Spectrographic patterns and the sound waves that they represent

Fig. 1. Four spectrograms of the spoken word "science." The vertical scale represents frequency, the horizontal dimension is time, and darkness represents intensity on a compressed scale. Three of the spectrograms are from three different speakers and the remaining spectrogram is a repetition of the word by one of the speakers (see text). The spectrograms were made on a Voiceprint Laboratories Sound Spectrograph.
are not, however, related so simply and directly to vocal anatomy; moreover, the spectrogram is not the primary evidence, but only a graphic means for examining the sounds that a speaker makes.

In fingerprint identification, the gross types of ridge patterns, such as loops and whorls, are used for classification and indexing; these types are determined mainly by heredity and thus have only limited power in differentiating persons. The minute details of the ridges are then compared for final identification and all points of similarity strongly imply a match, while any point of dissimilarity strongly implies a mismatch. In comparing voice patterns, we are not able to interpret similarities and differences in such simple ways.

The fingerprint features that are ultimately used for identification are the most minute details of the skin ridge patterns such as bifurcations, terminations, and interruptions. These details are determined mainly by random processes in prenatal skin development. There are a sizeable number of these minute anatomical features on each finger. There are an enormous number of possible combinations of these features, and it is known that their patterns remain unchanged throughout life (10). Comparable voice features for identification, if they exist, have not been established; moreover, changes with growth and environmental influences could be expected.

Whereas fingerprint patterns cannot easily be faked or disguised, a speaker can learn to alter his voice and imitate, with some success, the speech of other persons.

Variations found in fingerprint patterns do not consist of changes in patterns from one type to another, but rather in expansions (with growth), obliterations (of some features), smudges, or incompleteness. Spectrographic patterns are affected in a more fundamental way by the distortions of frequency, energy, and time that are commonly encountered in the transmission, recording, and analysis of sound. The very dimensions of the pattern are those that are changed by such sound distortions.

In view of basic differences between fingerprints and voice patterns and the inherent complexity of spoken language, we doubt that the reliability of voice identification can ever match that of fingerprint identification.

Experimental Evidence on Voice Identification

Both objective and subjective methods have been used to try to identify voices. In objective methods a piece of equipment makes all the decisions. Subjective methods may also involve equipment, such as a sound spectrograph to display the acoustic information, but the final decision— the judgment—is made by a man.

Objective methods of voice identification have used automatic pattern-matching applied to voice patterns. In one study, average spectral patterns were obtained for each of ten talkers and stored in a computer. To make identifications, a new pattern from each of the talkers was compared with each of the stored patterns to find the one most similar. Identification errors were about 10 percent (11, 12).

Subjective experiments using speech spectrograms have been of two types: (i) sorting experiments in which the observer sorts a set of spectrograms of a test word into individual talker categories; and (ii) matching experiments in which the observer identifies spectrograms of single talkers by matching them against spectrograms in a catalog of talkers, all speaking the same word or set of words.

In the sorting experiments, the observers knew how many talkers there were and how many examples were taken from each talker. In these experiments, test sets of 5 to 12 talkers were drawn at random from a pool of 123 male talkers selected to be homogeneous in regional accent (12, 13). In a test there were four examples of each test word from each talker. With 12 talkers, for example, 48 spectrograms were given to the observer and his task was to sort them into 12 categories corresponding to the individual talkers. Trained observers were used. In one such experiment (13), which used test sets of 5, 9, or 12 talkers, the average error rates, pooled over observers, ranged from 0.35 percent for 5 talkers in the set to 1.00 percent for 12 talkers in the set. In another sorting experiment (14), the observers were nine law enforcement officers, of whom seven were fingerprint experts. All were first trained in voice identification from spectrograms. Test sets of 12 talkers were used; the observers' error rates ranged from 0 to 3.48 percent with a median of 0.42 percent.

The matching experiments reported to date have employed test sets of talkers ranging in size from 5 to 50. In one matching experiment (13), nine talkers were used in the catalog. The catalog contained two examples of a test word as spoken by each talker, and the observer's task was to match a third example of the word spoken by one of the nine talkers. The average error rate was 1 percent; the range of error rates, over the ten different test words employed, was 0 to 3 percent. In another matching experiment (14) with 50 talkers drawn from the pool of talkers mentioned above, the catalog of spectrograms consisted of two examples of each of five words spoken in context by each talker. Nine trained observers matched new sets of the same five words, each set spoken by a talker who was one of the 50 talkers in the catalog. The error rate for observers working individually ranged from 0 to 11.1 percent with a median of 5.7 percent. The error rate for observers working together in pairs ranged from 3.2 percent to 14.3 percent, with a median of 7.7 percent.

In another matching experiment (15) using a set of five talkers and trained observers, the average error rate was 22 percent for words spoken in isolation. When the words were spoken in fluent context and matched against the same isolated words in the catalog, the error of talker identification was 63 percent.

In still another matching experiment (16), the results obtained from listening only were compared with the results obtained solely by visual examination of spectrograms, using the same set of utterances for the two methods of identification. A set of eight talkers was used, and a series of 14 identification tests was carried out. The performance of the observers improved over the series. The error rate for listening was always lower than for visual identification; at the best levels of performance, the average error rate was 6 percent for listening and 21 percent for visual identification. In further tests using new unknown talkers among the test samples, the observers were asked to judge whether a sample was spoken by any of the eight known talkers in the catalog. By listening, 6 to 8 percent of the unknown talkers were incorrectly called known; by visual examination of the spectrograms, 31 to 47 percent of the unknown talkers
were called known; this result indicated
that visual comparisons between spec-
trograms of talkers were less reliable
than auditory comparisons.

The wide differences in error rate
seen in these experiments reflect the
strong dependence of voice identification
judgments on specific conditions,
in particular on the experimental test
procedures, but also on the experience
and training of the observers, on the
speaking conditions under which the
speech samples are collected, and on
instrumentation.

How relevant are these experiments to
voice identification as used in legal
trials? The task of the expert witness
usually consists of judging the identity
of a speaker from two sets of spectro-
grams, one from a known speaker (the
accused) and the other from a speech
sample associated with the case but
produced by an unidentified speaker.
This is neither a sorting nor a matching
task. It is not matching because
there is only one entry in the catalog
of known speakers and the unknown
speaker may not even be in this cata-
log. It is not sorting because spec-
trograms are already sorted into two
categories: known and unknown.
Furthermore, all matching and sorting
experiments reported in the literature
estimated a closed set of known size; the
unknown sample with which the expert
observer is confronted is drawn
from an indefinitely large set of unidentified
speakers. None of the experiments in the literature has employed a
comparable task.

In addition to the results of controlled
experiments, there are essentially anec-
dotal accounts of experiences in applying
the methods of spectrographic voice
identification to law enforcement
problems. For example, we are informed
that "... over 250 cases were pro-
cessed for over 48 different law enforce-
ment agencies in the United States and
Europe which (it is believed to be) a con-
siderable body of practical proof, since
no report of an error has occurred";
also, that a police officer has "produced
approximately 25 verified identifications
where the suspected persons admitted
their guilt. In 37 cases the suspected per-
sons were eliminated and released from
any charges..." (17). The question of
what interpretation or reliance to put
on reports of this general kind is a
difficult one, first, because the relevant
facts may not be publicly available in
some types of investigations, or the
facts may be fragmentary and disputed,
as in courtroom proceedings; second,
because actual cases usually involve
other kinds of evidence so that the con-
tribution of voice identification to the
resolution of the case cannot be de-
terminated; and third, neither legal res-
olution of a case nor confession of
guilt gives reliable information about
the correctness of voice identifications
that may have been made. It is con-
ceivable that a careful analysis of ex-
perience with the investigative uses
of spectrographic voice identification
could lead to dependable estimates of
the practical reliability of the method
as applied to courtroom proceedings;
however, other methods using con-
trolled experiments could be far more
direct and would gain credibility by
full disclosure of data and proce-
dures.

Situations in which one speaker at-
ttempts to mimic another have not been
examined in depth, but speech scien-
tists have noted cases in which spectro-
grams of different talkers are very simi-
lar (18) and in which an experienced
mimic with special playback aids can
produce speech sequences whose spec-
trographic patterns are capable of be-
ing confused with those of another
talker (19). There have also been re-
ports of instances in which the speech
spectrograms of a mimic appeared quite
different from those of the individual
being mimicked (20).

Requirements for Validation of
Voice Identification Methods

What kinds of evidence would con-
vince scientists of the reliability of
speaker identification based on voice
patterns?

The usual basis for the scientific ac-
ceptance of any new procedure is an ex-
plicit description of experimental meth-
ods and of results of relevant tests. The
description must be sufficient to allow
the replication of experiments and re-
sults by other scientists. We have seen,
in the preceding section, two doubts
that arise when we apply this criterion
to voice identification based on spec-
trograms. First, fully reliable identifi-
cations were not the usual result even
in small-scale sorting and matching ex-
periments. Second, even when experi-
mental methods were explicit, they dif-
fered in kind and complexity, as well
as in scale, from the practical task of
positively identifying a man solely on
the basis of voice patterns.

Lacking explicit knowledge and pro-
cedures, can individuals nonetheless
acquire such expertise in identification
from voice patterns that their opinions
could be accepted as reliable? This po-
sibility may exist, for the human eye
and brain are superb instruments, but
it cannot be assumed without proof.
Validation of this approach to voice
identification becomes a matter of rep-
licable experiments on the expert him-
self, considered as a voice-identifying
machine.

Thus voice identification might be
accomplished either on the basis of ex-
plicit knowledge and procedures avail-
able to anyone, or on the basis of the
explained expertise of individuals. In
either case, validation requires experi-
mental assessment of performance on
relevant tasks.

Explicit procedures might be devel-
oped based on specifications of voice
features useful for identification. Once
the features were known, it would be
important to learn how such features
were distributed in the population.
These distributions would permit an es-
imate of the size of the population of
discriminable voices and so give an
indication of the reliability that would
be theoretically attainable in specific
situations (21).

What would we need to know about
the performance of the expert whose
procedures are not fully explicit? First,
the experiments with experts should be
statistically valid models of the prac-
tical task. The tests should include judg-
ments of whether two speakers are
identical when one spectrogram is avail-
able from each speaker and when more
than one spectrogram is available. It
may also be appropriate to perform
tests in which the unknown talker,
whose identity is to be determined from
aspectrogram, may be drawn from a
set of known talkers or may not be a
member of this set. Test formats should
yield information about the probabil-
ities of missed identification as well as
false identification, and the trade-off be-
tween them; also, about the effects of
size of population, nature of the spoken
context in both known and unknown
samples, and type of display of voice
pattern and its sensitivity to noise,
distortion, or deliberate attempts to dis-
guise the unknown voice (22).

It may be objected that this minimal
set of tests is unreasonably arduous. We
do not believe that it is. As scientists we could accept no less in checking the reliability of a "black box" supposed to perform speaker identification. This is how we must view the expert until he can provide an explicit and testable explanation of his methods.

Scientific Criteria and Legal Acceptance

Scientific and legal judgments differ in this basic respect: scientific acceptance is closely tied to technical evidence, whereas court determinations may rely heavily on the opinions of expert witnesses. When experts in recognized specialties differ in their opinions, the court may have to a jury the assessment of conflicting opinions and of the relative expertise of witnesses. When new kinds of expert testimony are offered (for example, speaker identification by spectrographic voice patterns), the court, before accepting such evidence, may first scrutinize the nature of the proffered expertise in relation to the consensus of informed scientific opinion. Today’s consensus suggests that speaker identification by voice patterns is subject to error at a high, and as yet undetermined, rate.

Court determinations may also depend on the apparent validity of exhibits brought in evidence. Spectrographic evidence may often display features that are overwhelmingly influenced by the words spoken rather than by the speaker's identity. Judge and jury may therefore be misled in understanding an expert's testimony and in assessing the expert's evidence.

Summary and Conclusions

1) Speech carries many simultaneous messages interwoven in a complex of words and phrases, moods, and individual voice characteristics. In their acoustic realization as speech, these messages are highly interdependent and thus difficult to disentangle. However, human observers can, to a limited extent, identify voices by ear or by visual examination of the acoustic patterns of speech.

2) The acoustic speech signal can be analyzed in frequency, energy, and time and recorded graphically to produce a spectrogram. Neither the spectrogram nor any other known process can directly display an individual's voice traits, because of the intermixing of these traits with the features that characterize words and phrases. At present, a human observer must examine the patterns of spectrograms and decide subjectively about the identities of talkers.

3) Similarities and differences among spectrographic patterns are ambiguous and may be misleading. Prominent similarities usually indicate that similar sounds were spoken, but do not necessarily imply that they were spoken by the same person; differences in pattern, when the words are the same, may reflect differences of speaker or only normal variations in the utterances of a single speaker.

4) Speech spectrograms, when used for voice identification, are not analogous to fingerprints, primarily because of fundamental differences in the sources of the patterns and consequent differences in their interpretation. For example, fingerprint patterns are a direct representation of anatomical traits. Vocal anatomy, on the contrary, is not represented in any direct way in voice spectrograms. In the interpretation of fingerprints, all points of similarity imply a match, although some more strongly than others; this simple relationship does not hold for the interpretation of voice patterns.

5) Experimental studies of voice identification by using visual interpretation of spectrograms by human observers indicate false identification rates ranging from zero to as high as 63 percent, depending on the type of task set for the observer, his training, and other factors. Reliable machine methods for voice identification have not yet been established.

6) Experience in applying spectrographic voice identification in law enforcement has led proponents of the method to express confidence in its reliability. The basis for this confidence is not, however, accessible to objective assessment.

7) Experimental studies to assess the reliability of voice identification under practical conditions, whether by experts or by explicit procedures, have not yet been made, but the requirements for such studies have been outlined.

We find, in brief, that spectrographic voice identification has inherent difficulties and uncertainties. Anecdotal evidence given in support of the method is not scientifically convincing. The controlled experiments that have been reported give conflicting results. Further more, the experiments reported thus far do not provide a direct test of the practical task of determining whether two spoken passages were uttered by the same speaker or by two different speakers, one of whom may be a person unknown.

We conclude that the available results are inadequate to establish the reliability of voice identification by spectrograms. We believe this conclusion is shared by most scientists who are knowledgeable about speech; hence, many of them are deeply concerned about the use of spectrographic evidence in the courts. Procedures exist, as we have suggested, by which the reliability of voice identification methods can be evaluated. We believe that such validation is urgently required.

References and Notes

2. This article is not a report of the Acoustical Society of America, and the opinions given are those of the authors as individuals.
4. Technical details in support of the discussions are contained in appendices. These will be on file with the Secretary, Acoustical Society of America, or the president in the Journal of the Acoustical Society of America at the discretion of its editor; a detailed scientific review of voice identification has been prepared by M. Hecker, Methods for Measuring Speaker Recognition (Stanford Research Institute, Menlo Park, Calif., April 1969).
22. Research projects on spectrographic voice identification, sponsored by the U.S. Department of Justice, are currently in progress at Michigan State University (see Tosi, 14) and at Stanford Research Institute (see Hecker, 4).