Articulatory Gestures as Phonological Units*

Catherine P. Browman and Louis Goldstein†

1 A GESTURAL PHONOLOGY

Over the past few years, we have been investigating a particular hypothesis about the nature of the basic 'atoms' out of which phonological structures are formed. The atoms are assumed to be primitive actions of the vocal tract articulators that we call 'gestures.' Informally, a gesture is identified with the formation (and release) of a characteristic constriction within one of the relatively independent articulatory subsystems of the vocal tract (i.e., oral, laryngeal, velic). Within the oral subsystem, constrictions can be formed by the action of one of three relatively independent sets of articulators: the lips, the tongue tip/blade and the tongue body. As actions, gestures have some intrinsic time associated with them—they are characterizations of movements through space and over time (see Fowler et al., 1980).

Within the view we are developing, phonological structures are stable 'constellations' (or 'molecules', to avoid mixing metaphors) assembled out of these gestural atoms. In this paper, we examine some of the evidence for, and some of the consequences of, the assumption that gestures are the basic atoms of phonological structures. First, we attempt to establish that gestures are pre-linguistic discrete units of action that are inherent in the maturation of a developing child and that therefore can be harnessed as elements of a phonological system in the course of development (§ 1.1). We then give a more detailed, formal characterization of gestures as phonological units within the context of a computational model (§ 1.2), and show that a number of phonological regularities can be captured by representing constellations of gestures (each having inherent duration) using gestural scores (§ 1.3). Finally, we show how the proposed gestural structures relate to proposals of feature geometry (§§ 2 - 3).

1.1 Gestures as pre-linguistic primitives

Gestures are units of action that can be identified by observing the coordinated movements of vocal tract articulators. That is, repeated observations of the production of a given utterance will reveal a characteristic pattern of constrictions being formed and released. The fact that these patterns of (discrete) gestures are similar in structure to the nonlinear phonological representations being currently postulated (e.g., Clements, 1985; Hayes, 1986; Sagey, 1986), together with some of the evidence presented in Browman and Goldstein (1986, in press), leads us to make the strong hypothesis that gestures themselves constitute basic phonological units. This hypothesis has the attractive feature that the basic units of phonology can be identified directly with cohesive patterns of movement within the vocal tract. Thus, the phonological system is built out of inherently discrete units of action. This state of affairs would be particularly useful for a child learning to speak. If we assume that discrete gestures (like those that will eventually function as phonological units) emerge in the child's behavioral repertoire in advance of any specifically linguistic development, then it is possible to view phonological development as harnessing these action units to be the basic units of phonological structures.

The idea that pre-linguistic gestures are employed in the service of producing early words has been proposed and supported by a number of writers, for example, Fry (1966, in Vihman in press), Locke (1983), Studdert-Kennedy (1987) and Vihman (in press), where what we identify as 'gestures' are referred to as 'articulatory routines' or the like. The view we are proposing extends...
The evidence that gestures are pre-linguistic units of action can be seen in the babbling behavior of young infants. The descriptions of infant babbling (ages 6-12 months) suggest a predominance of what are transcribed as simple CV syllables (Locke, 1986; Oller & Eilers, 1982). The 'consonantal' part of these productions can be analyzed as simple, gross, constriction maneuvers of the independent vocal tract subsystems and (within the oral subsystem) the separate oral articulator sets. For example, based on frequency counts obtained from a number of studies, Locke (1983) finds that the consonants in (1) constitute the 'core' babbling inventory: these 12 'consonants' account for about 95% of the babbles of English babies. Similar frequencies obtain in other language environments.

\[(1) \ h \ b d g \ p t k \ m n \ j w \ s\]

These transcriptions are not meant to be either systematic phonological representations (the child doesn't have a phonology yet), or narrow phonetic transcriptions (the child cannot be producing the detailed units of its 'target' language, because, as noted below, there do not seem to be systematic differences in the babbles produced by infants in different language environments). Others have noted the problems inherent in using a transcription that assumes a system of units and relations to describe a behavior that lacks such a system (e.g., Kent & Murray, 1982; Koopmans-van Beinum & van der Stelt, 1986; Oller, 1986; Studdert-Kennedy, 1987). As Studdert-Kennedy (1987) argues, it seems likely that these transcriptions reflect the production by the infant of simple vocal constriction gestures, of the kind that evolve into mature phonological structures (which is why adults can transcribe them using their phonological categories). Thus, /h/ can be interpreted as a laryngeal widening gesture and /bdg/ as 'gross' constriction gestures of the three independent oral articulator sets (lips, tongue tip, and tongue body). /ptk/ combine the oral constriction gestures with the laryngeal maneuver, and /mn/ combine oral constrictions with velar lowering. These combinations do not necessarily indicate an ability on the part of the infant to coordinate the gestures. Rather, any accidental temporal coincidence of two such gestures would be perceived by the listener as the segments in question.

The analysis outlined above suggests that babbling involves the emergence, in the infant, of simple constriction gestures of independent parts of the vocal tract. As argued by Locke (1986), the pattern of emergence of these actions can be viewed as a function of anatomical and neurophysiological developments, rather than the beginning of language acquisition, per se. This can be seen, first of all, in the fact that the babbling inventory and its developmental sequence have not been shown to vary as a function of the particular language environment in which the child finds itself (although individual infants may vary considerably from one another in the relative frequencies of particular gestures—Studdert-Kennedy 1987; Vihman, in press). In fact, in the large number of studies reviewed by Locke (1983), there appear to be no detectable differences (either instrumentally or perceptually) in the 'consonantal' babbling of infants reared in different language environments. (More recent studies have found some language environment effect on the overall long term spectrum of vocalic utterances—de Boysson-Bardies et al., 1986; and on prosody—de Boysson-Bardies et al., 1984. Other subtle effects may be uncovered with improvement of analytic techniques.)

Secondly, Locke (1983) notes that the developmental changes in frequency of particular babbled consonants can likely be explained by anatomical developments. Most of the consonants produced by very young infants (less than six months) involve tongue body constrictions, usually transcribed as velars. Some time shortly after the beginning of repetitive canonical babbling (usually in the seventh month), tongue tip and lip constrictions begin to outnumber tongue body constrictions, with tongue tip constrictions eventually dominating. Even deaf infants show a progression that is qualitatively similar, at least in early stages, although their babbling can be distinguished from that of hearing infants on a number of acoustic measures (Oller & Eilers, 1988). Locke suggests an explanation in terms of vocal tract maturation. At birth, the infant's larynx is high, and the tongue virtually fills the oral cavity (Lieberman, 1984). This would account for the early dominance of tongue body constrictions. After the larynx drops, tongue tip and lip constrictions—without simultaneous tongue constrictions—are more readily formed. In particular, the closing action of the mandible will
then contribute to constrictions at the front of the mouth.

Finally, Locke (1986) notes that the timing of the development of repetitive 'syllabic' babbling coincides with the emergence of repetitive motor behaviors generally. He cites Thelen's (1981) observation of 47 different rhythmic activities that have their peak frequency at 6-7 months. Locke concludes (1986, p. 145) that 'It thus appears that the syllabic patterning of babble—like the phonetic patterning of its segments—is determined mostly by nonlinguistic developments of vocal tract anatomy and neurophysiology.'

The pre-linguistic vocal gestures become linguistically significant when the child begins to produce its first few words. The child seems to notice the similarity of its babbled patterns to the speech s/he hears (Locke 1986), and begins to produce 'words' (with apparent referential meaning) using the available set of vocal gestures. It is possible to establish that there is a definite relationship between the (nonlinguistic) gestures of babbling and the gestures employed in early words by examining individual differences among children. Vihman et al. (1985) and Vihman (in press) find that the particular consonants that were produced with high frequency in the babbling of a given child also appear with high frequency in that child's early word productions. Thus, the child is recruiting its well-practiced action units for a new task. In fact, in some early cases (e.g., 'baby' words like *mama*, etc.), 'recruiting' is too active a notion. Rather, parents are helping the child establish a referential function with sequences that already exist as part of the babbling repertoire (Locke, 1986).

Once the child begins producing words (complex units that have to be distinguished one from another) using the available gestures as building blocks, phonology has begun to form. If we compare the child's early productions (using the small set of pre-linguistic gestures) to the gestural structure of the adult forms, it is clear that there are (at least) two important developments that are required to get from one to the other: (1) differentiation and tuning of individual gestures and (2) coordination of the individual gestures belonging to a given word. Let us examine these in turn.

Differentiation and tuning. While the repertoire of gestures inherent in the consonants of (1) above employs all of the relatively independent articulator sets, the babbled gestures involve just a single (presumably gross) movement. For example, some kind of closure is involved for oral constriction gestures. In general, however, languages employ gestures produced with a given articulator set that contrast in the degree of constriction. That is, not only are closure gestures produced but also fricative and wider (approximant) gestures. In addition, the exact location of the constriction formed by a given articulator set may contrast, e.g., in the gestures for */b/*, */s/* and */f/*.

Thus, a single pre-linguistic constrictive gesture must eventually differentiate into a variety of potentially contrastive gestures, tuned with different values of constriction location and degree. Although the location and degree of the constriction formed by a given articulator set are, in principle, physical continua, the differentiated gestures can be categorically distinct. The partitioning of these continua into discrete categories is likely aided by quantal (i.e., nonlinear) articulatory-auditory relations of the kind proposed by Stevens (1972, 1989). In addition, Lindblom (1986) has shown how the pressures to keep contrasting words perceptually distinct can lead to discrete clustering along some articulatory/acoustic continua. Even so, the process of differentiation may be lengthy. Nittrouer, Studdert-Kennedy, and McGowan (1989) present data on fricative production in American English children. They find that differentiation between */s/* and */f/* is increasing in children from ages three to seven, and hasn't yet reached the level shown by adults. In addition, tuning may occur even where differentiation is unnecessary. That is, even if a language has only a single tongue tip closure gesture, its constriction location may be tuned to a particular language-specific value. For example, English stops have an alveolar constriction location, while French stops are more typically dentals.

Coordination. The various gestures that constitute the atoms of a given word must be organized appropriately. There is some evidence that a child can know what all the relevant gestures are for some particular word, and can produce them all, without either knowing or being able to produce the appropriate organization. Studdert-Kennedy (1987) presents an example of this kind from Ferguson and Farwell (1975). They list ten attempts by a 15-month old girl to say the word *pen* in a half-hour session, as shown in (2):

(2) [mɑ, ˈæ, dɛdən, hɪn, məboʊ, pʰn, ʰθθθθθθ, baθ, dʰauθ, buə]

While these attempts appear radically different, they can be analyzed, for the most part, as the set
of gestures that constitute *pen* misarranged in various ways: glottal opening, bilabial closure, tongue body lowering, alveolar closure and velum lowering. Eventually, the ‘right’ organization is hit upon by the child. The search is presumably aided by the fact that the coordinated structure embodied in the target language is one of a relatively small number of dynamically stable patterns (see also Boucher, 1988). The formation of such stable patterns may ultimately be illuminated by research into stable modes in coordinated human action in general (e.g., Haken et al., 1985; Schmidt et al., 1987) being conducted within the broad context of the non-linear dynamics relevant to problems of pattern formation in physics and biology (e.g., Glass & Mackey, 1988; Thompson & Stewart, 1976). In addition, aspects of coordination may emerge as the result of keeping a growing number of words perceptually distinct using limited articulatory resources (Lindblom et al., 1983).

If phonological structures are assumed to be organized patterns of gestural units, a distinct methodological bonus obtains: the vocal behavior of infants, even pre-linguistic behavior, can be described using the same primitives (discrete units of vocal action) that are used to describe the fully elaborated phonological system of adults. This allows the growth of phonological form to be precisely monitored, by observing the development of the primitive gestural structures of infants into the elaborated structures of adults (Best & Wilkenfeld, 1988 provide an example of this). In addition, some of the thorny problems associated with the transcription of babbling can be obviated. Discrete units of action are present in the infant, and can be so represented, even if adult-like phonological structures have not yet developed. A similar advantage applies to describing various kinds of ‘disordered’ speech (e.g., Kent, 1983; Marshall et al., 1988), which may lack the organization shown in ‘normal’ adult phonology, making conventional phonological/phonetic transcriptions inappropriate, but which may, nevertheless, be composed of gestural primitives. Of course, all this assumes that it is possible to give an account of adult phonology using gestures as the basic units—it is to that account that we now turn.

1.2 The nature of phonological gestures

In conjunction with our colleagues Elliot Saltzman and Philip Rubin at Haskins Laboratories, we are developing a computational model that produces speech beginning with a representation of phonological structures in terms of gestures (Browman et al., 1984; Browman et al., 1986; Browman & Goldstein, 1987; Saltzman et al., 1987), where a *gesture* is an abstract characterization of coordinated task-directed movements of articulators within the vocal tract. Each gesture is precisely defined in terms of the parameters of a set of equations for a ‘task-dynamic’ model (Saltzman, 1986; Saltzman & Kelso, 1987). When the control regime for a given gesture is active, the equations regulate the coordination of the model’s articulators in such a way that the gestural ‘task’ (the formation of a specified constriction) is reached as the articulator motions unfold over time. Acoustic output is obtained from these articulator motions by means of an articulatory synthesizer (Rubin et al., 1981). The gestures for a given utterance are themselves organized into a larger coordinated structure, or constellation, that is represented in a *gestural score* (discussed in §1.3). The score specifies the sets of values of the dynamic parameters for each gesture, and the temporal intervals during which each gesture is active. While we use analyses of articulatory movement data to determine the parameter values for the gestures and gestural scores, there is nevertheless a striking convergence between the structures we derive through these analyses and phonological structures currently being proposed in other frameworks (e.g., Anderson & Ewen, 1987; Clements, 1985; Ewen, 1982; Lass, 1984; McCarthy, 1989; Plotkin, 1976; Sagey, 1986).

Within task dynamics, the goal for a given gesture is specified in terms of independent task dimensions, called *vocal tract variables*. Each tract variable is associated with the specific sets of articulators whose movements determine the value of that variable. For example, one such tract variable is Lip Aperture (LA), corresponding to the vertical distance between the two lips. Three articulators can contribute to changing LA: the jaw, vertical displacement of the lower lip with respect to the jaw, and vertical displacement of the upper lip. The current set of tract variables in the computational model, and their associated articulators, can be seen in Figure 1. Within the task dynamic model, the control regime for a given gesture coordinates the ongoing movements of these articulators in a flexible, but task-specific manner, according to the demands of other concurrently active gestures. The motion associated with each of a gesture’s tract variables is specified in terms of an equation for a second-order dynamical system. The equilibrium
position parameter of the equation \([x_0]\) specifies the tract variable target that will be achieved, and the stiffness parameter \(k\) specifies (roughly) the time required to get to target. These parameters are tuned differently for different gestures. In addition, their values can be modified by stress.

Gestures are currently specified in terms of one or two tract variables. Velic gestures involve a single tract variable of aperture size, as do glottal gestures. Oral gestures involve pairs of tract variables that specify the constriction degree (LA, TTCD, and TBCD) and constriction location (LP, TTCL, and TBCL). For simplicity, we will refer to the sets of articulators involved in oral gestures using the name of the end-effector, that is, the name of the single articulator at the end of the chain of articulators forming the particular constriction: the LIPS for LA and LP, the tongue tip (TT) for gestures involving TTCD and TTCL, and the tongue body (TB) for gestures involving TBCD and TBCL. As noted above, each tract variable is modelled using a separate dynamical equation; however, at present the paired tract variables use identical stiffness and are activated and de-activated simultaneously. The damping parameter \(b\) for oral gestures is always set for critical damping—the gestures approach their targets, but do not overshoot it, or 'ring.' Thus, a given oral gesture is specified by the values of three parameters: target values for each of a pair of tract variables, and a stiffness value (used for both equations).

This set of tract variables is not yet complete, of course. Other oral tract variables that need to be implemented include an independent tongue root variable (Ladefoged & Halle, 1988), and (as discussed in § 2.1) variables for controlling the shape of TT and TB constrictions as seen in the third dimension. Additional laryngeal variables are required to allow for pitch control and for vertical movement of the larynx, required, for example, for ejectives and implosives.

<table>
<thead>
<tr>
<th>tract variable</th>
<th>articulators involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>upper & lower lips, jaw</td>
</tr>
<tr>
<td>LA</td>
<td>upper & lower lips, jaw</td>
</tr>
<tr>
<td>TTCL</td>
<td>tongue tip, body, jaw</td>
</tr>
<tr>
<td>TTCD</td>
<td>tongue tip, body, jaw</td>
</tr>
<tr>
<td>TBCL</td>
<td>tongue body, jaw</td>
</tr>
<tr>
<td>TBCD</td>
<td>tongue body, jaw</td>
</tr>
<tr>
<td>VEL</td>
<td>velum</td>
</tr>
<tr>
<td>GLO</td>
<td>glottis</td>
</tr>
</tbody>
</table>

![Figure 1. Tract variables and contributing articulators of computational model.](image-url)
The representations of gestures employing distinct sets of tract variables are categorically distinct within the system outlined here. That is, they are defined using different variables that correspond to different sets of articulators. They provide, therefore, an inherent basis for contrast among gestures (Browman & Goldstein, in press). However, for contrasting gestures that employ the same tract variables, the difference between the gestures is in the tuned values of the continuous dynamic parameters (for oral gestures: constriction degree, location and stiffness). That is, unlike the articulator sets being used, the dynamic parameters do not inherently define categorically distinct classes. Nonetheless, we assume that there are stable ranges of parameter values that tend to contrast with one another repeatedly in languages (Ladefoged & Maddieson, 1986; Vatikiotis-Bateson, 1988). The discrete values might be derived using a combination of articulatory and auditory constraints applied across the entire lexicon of a language, as proposed by Lindblom et al. (1983). In addition, part of the basis for the different ranges might reside in the nonlinear relation between the parameter values and their acoustic consequences, as in Stevens' quantal theory (Stevens 1972, 1989). In order to represent the contrastive ranges of gestural parameter values in a discrete fashion, we employ a set of gestural descriptors. These descriptors serve as pointers to the particular articulator set involved in a given gesture, and to the numerical values of the dynamical parameters characterizing the gestures. In addition, they can act as classificatory and distinctive features for the purposes of lexical and phonological structure. Every gesture can be specified by a distinct descriptor structure. This functional organization can be formally represented as in (3), which relates the parameters of the dynamical equations to the symbolic descriptors. Contrasting gestures will differ in at least one of these descriptors.

(3) Gesture = articulator set (constriction degree, constriction location, constriction shape, stiffness)

Constriction Degree is always present, and refers to the x0 value for the constriction degree tract variables (LA, TTCD, TBCD, VEL, or GLO).

Constriction Location is relevant only for oral gestures, and refers to the x0 value for the constriction location tract variables (LP, TTCL, or TBCL).

Constriction Shape is relevant only for oral gestures, and refers to the x0 value of constriction shape tract variables. It is not currently implemented.

Stiffness refers to the k value of the tract variables.

Figure 2 displays the inventory of articulator sets and associated parameters that we posit are required for a general gestural phonology. The parameters correspond to the particular tract variables of the model shown below them. Those parameters with asterisks are not currently implemented.

<table>
<thead>
<tr>
<th>Articulator</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIPS</td>
<td>(con degree, con location, LA, LP, stiffness)</td>
</tr>
<tr>
<td>TT</td>
<td>(con degree, con location, con shape*, stiffness)</td>
</tr>
<tr>
<td>TB</td>
<td>(con degree, con location, con shape*, stiffness)</td>
</tr>
<tr>
<td>TR*</td>
<td>(con degree*, con location*, stiffness)</td>
</tr>
<tr>
<td>VEL</td>
<td>(con degree, VEL, stiffness)</td>
</tr>
<tr>
<td>GLO</td>
<td>(con degree, con location*, GLO, stiffness)</td>
</tr>
</tbody>
</table>

Figure 2. Inventory of articulator sets and associated parameters.

For the present, we list without comment the possible descriptor values for the constriction degree (CD) and constriction location (CL) dimensions in (4). In § 2.1, we will discuss the gestural dimensions and these descriptors in detail, including a comparison to current proposals of featural geometry.
Articulatory Gestures as Phonological Units

<table>
<thead>
<tr>
<th>CD descriptors:</th>
<th>closed critical narrow mid wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL descriptors:</td>
<td>protruded labial dental alveolar post-alveolar palatal velar uvular pharyngeal</td>
</tr>
</tbody>
</table>

In the phonology of dynamically defined articulatory gestures that we are developing, gestures are posited to be the atoms of phonological structure. It is important to note that such gestures are relatively abstract. That is, the physically continuous movement trajectories are analyzed as resulting from a set of discrete, concurrently active gestural control regimes. They are discrete in two senses: (1) the dynamic parameters of a gesture's control regime remain constant throughout the discrete interval of time during which the gesture is active, and (2) gestures in a language may differ from one another in discrete ways, as represented by different descriptor values. Thus, as argued in Browman and Goldstein (1986) and Browman and Goldstein (in press), the gestures for a given utterance, together with their temporal patterning, perform a dual function. They characterize the actual observed articulator movements (thus obviating the need for any additional implementation rules), and they also function as units of contrast (and more generally capture aspects of phonological patterning). As discussed in those papers, the gesture as a phonological unit differs both from the feature and from the segment (or root node in current feature geometries). It is a larger unit than the feature, being effectively a unitary constriction action, parameterized jointly by a linked structure of features (descriptor values). Yet it is a smaller unit than the segment: several gestures linked together are necessary to form a unit at the segmental, or higher, levels.

1.3 Gestural scores: Articulatory tiers and internal duration

In the preceding section, gestures were defined with reference to a dynamical system that shapes patterns of articulatory movements. Each gesture possesses, therefore, not only an inherent spatial aspect (i.e., a tract variable goal) but also an intrinsic temporal aspect (i.e., a gestural stiffness). Much of the power of the gestural approach follows from these basic facts about gestures (combined with their abstractness), since they allow gestures to overlap in time as well as in articulator and/or tract variable space (see also Bell-Berti & Harris, 1981; Fowler, 1980, 1983; Fujimura, 1981a,b). In this section, we show how overlap among gestures is represented, and demonstrate that simple changes in the patterns of overlap between neighboring gestural units can automatically produce a variety of superficially different types of phonetic and phonological variation.

Within the computational model described above, the pattern of organization, or constellation, of gestures corresponding to a given utterance is embodied in a set of phasing principles (see Kelso & Tuller, 1987; Nittrouer et al., 1988) that specify the spatiotemporal coordination of the gestures (Browman & Goldstein, 1986). The pattern of intergestural coordination that results from applying the phasing principles, along with the interval of active control for individual gestures, is displayed in a two-dimensional gestural score, with articulatory tiers on one dimension and temporal information on the other (Browman et al., 1986; Browman & Goldstein, 1987). A gestural score for the word palm (pronounced [pam]) is displayed in Figure 3a. As can be seen in the figure, the tiers in a gestural score, on the vertical axis, represent the sets of articulators (or the relevant subset thereof) employed by the gestures, while the horizontal dimension codes time.

The boxes in Figure 3a correspond to individual gestures, labelled by their descriptor values for constriction degree and constriction location (where relevant). For example, the initial oral gesture is a bilabial closure, represented as a constriction of the LIPS, with a [closed] constriction degree, and a [labial] constriction location. The horizontal extent of each box represents the interval of time during which that particular gesture is active. During these activation intervals, which are determined in the computational model from the phasing principles and the inherent stiffnesses of each gesture, the particular set of dynamic parameter values that defines each gesture is actively contributing to shaping the movements of the model articulators. In Figure 3b, curves are added that show the time-varying tract variable trajectories generated by the task dynamic model according to the parameters indicated by the boxes. For example, during the activation interval of the initial labial closure, the curve representing LA (the vertical distance between the lips) decreases. As can be seen in these curves, the activation intervals directly capture something about the durations of the movements of the gestures.
Figure 3. Gestural score for *palm* [pam] using box notation. (a) Activation intervals only; (b) model generated tract variable motions added.
Figure 4 presents an alternative symbolic redisplay of the gestural score. Instead of the 'box' notation of Figure 3, a 'point' notation is employed that references only the gestural descriptors and relative timing of their 'targets.' The extent of activation of the gestures in the box notation is not indicated. In addition, association lines between the gestures have been added. These lines indicate which gestures are phased with respect to each other. Thus, the display is a shorthand representation of the phasing rules discussed in Browman and Goldstein (1987). The pair of gestures connected by a given association line are coordinated so that a specified phase of one gesture is synchronized with some phase of the other. For example, the peak opening of the GLO [wide] gesture (180 degrees) is synchronized with the release phase (290 degrees) of the LIPS [clo labial] gesture. Also important for the phase rules is the projection of oral constriction gestures onto separate Vowel and Consonant tiers, which are not shown here (Browman & Goldstein, 1987, 1988; see also Keating, 1985).

The use of point notation highlights the association lines, and, as we shall see in § 2.2.2, is useful for the purpose of comparing gestural organizations with feature geometry representations in which individual units lack any extent in time. For the remainder of this section, however, we will be concerned with showing the extent of temporal overlap of gestures, and therefore will employ the box notation form of the gestural score.

The information represented in the gestural score serves to identify a particular lexical entry. The basic elements in such a lexical unit are the gestures, which, as we have already seen, can contrast with one another by means of differing descriptor values. In addition, gestural scores for different lexical items can contrast in terms of the presence vs. absence of particular gestures (Browman & Goldstein, 1986, in press; Goldstein & Browman, 1986). Notice that one implication of taking gestures as basic units is that the resulting lexical representation is inherently underspecified, that is, it contains no specifications for irrelevant features. When a given articulator is not involved in any specified gesture, it is attracted to a 'neutral' position specific to that articulator (Saltzman et al., 1988; Saltzman & Munhall, 1989).

The fact that each gesture has an extent in time, and therefore can overlap with other gestures, has a variety of phonological and phonetic consequences. Overlap between invariantly specified gestures can automatically generate contextual variation of superficially different sorts: (1) acoustic noninvariance, such as the different formant transitions that result when an invariant consonant gesture overlaps different vowel gestures (Liberman & Mattingly, 1985); (2) allophonic variation, such as the nasalized vowel that is produced by overlap between a syllable-final velar opening gesture and the vowel gesture (Krakow, 1989); and (3) various kinds of 'coarticulation,' such as the context-dependent vocal tract shapes for reduced schwa vowels that result from overlap by the neighboring full vowels (Browman & Goldstein, 1989; Fowler, 1981). Here, however, we will focus on the implications of directly representing overlap among phonological units for the phonological/phonetic alternations in fluent speech.

![Diagram of gestural score for 'palm' [pam]](image-url)

*Figure 4. Gestural score for *palm* [pam] using point notation, with association lines added.*
Browman and Goldstein (1987) have proposed that the wide variety of differences that have been observed between the canonical pronunciation of a word and its pronunciation in fluent contexts (e.g., Brown, 1977; Shockey, 1974) all result from two simple kinds of changes to the gestural score: (1) reduction in the magnitude of individual gestures (in both time and space) and (2) increase in overlap among gestures. That paper showed how these two very general processes might account for variations that have traditionally been described as segment deletions, insertions, assimilations and weakenings. The reason that increased overlap, in particular, can account for such different types of alternations is that the articulatory and acoustic consequences of increased overlap will vary depending on the nature of the overlapping gestures. We will illustrate this using some of the examples of deletion and assimilation presented in Browman and Goldstein (1987), and then compare the gestural account with the treatment of such examples in non-linear phonological theories that do not directly represent overlap among phonological units.

Let us examine what happens when a gestural score is varied by increasing the overlap between two oral constriction gestures, for example from no overlap to complete synchrony. This 'sliding' will produce different consequences in the articulatory and acoustic output of the model, depending on whether the gestures are on the same or different articulatory tiers, i.e., whether they employ the same or different tract variables. If the gestures are on different articulatory tiers, as in the case of a LIPS closure and a tongue tip (TT) closure, then the resulting tract variable motion for each gesture will be unaffected by the other concurrent gesture. Their tract variable goals will be met, regardless of the amount of overlap. However, with sufficient overlap, one gesture may completely obscure the other acoustically, rendering it inaudible. We refer to this as gestural 'hiding.' In contrast, when two gestures are on the same articulatory tier, for example, the tongue tip constriction gestures associated with /t/ and /d/, they cannot overlap without perturbing each others' tract variable motions. The two gestures are in competition—they are attempting to do different tasks with the identical articulatory structures. In this case, the dynamical parameters for the two overlapping gestural control regimes are 'blended' (Saltzman et al., 1988; Saltzman & Munhall, in press).

Browman and Goldstein (1987) presented examples of articulations in fluent speech that showed the hiding and blending behavior predicted by the model. Examples of hiding are transcribed in (5).

(5) (a) /pɔfɔktˈməməri/ → [pɔfɔkˈməməri]
 (b) /sɛvəˈpləs/ → [sɛvəˈpləs]

In (5a), careful listening to a speaker's production of perfect memory produced in a fluent sentence context failed to reveal any audible /t/ at the end of perfect, although the /t/ was audible when the two words were produced as separate phrases in a word list. This deletion of the final /t/ is an example of a general (variable) process in English that deletes final /t/ or /d/ in clusters, particularly before initial obstruents (Guy, 1980). However, the articulatory data for the speaker examined in Browman and Goldstein, (1987) showed that nothing was actually deleted from a gestural viewpoint. The alveolar closure gesture at the end of 'perfect' was produced in the fluent context, with much the same magnitude as when the two words were produced in isolation, but it was completely overlapped by the constrictions of the preceding velar closure and the following labial closure. Thus, the alveolar closure gesture was acoustically hidden. This increase in overlap is represented in Figure 5, which shows the (partial) gestural scores posited for the two versions of this utterance, based on the observed articulatory movements. The gestures for the first syllable of memory (shown as shaded boxes) are well separated from the gestures for the last syllable of perfect (shown as unshaded boxes) in the word list version in Figure 5a, but they slide earlier in time as shown in Figure 5b, producing substantial overlap among three closure gestures. Note that these three overlapping gestures are all on separate tiers.

In (5b), seven plus shows an apparent assimilation, rather than deletion, and was produced when the phrase was produced at a fast rate. Assimilation of final alveolar stops and nasals to a following labial (or velar) stop is a common connected speech process in English (Brown, 1977; Gimson, 1962). Here again, however, the articulatory data in Brown and Goldstein (1987) showed that the actual change was 'hiding' due to increased overlap: the alveolar closure gesture at the end of seven was still produced by the speaker in the 'assimilated' version, but it was hidden by the preceding labial fricative and following labial stop.
Articulatory Gestures as Phonological Units

Figure 5. Partial gestural score for two versions of *perfect memory*, posited from observed articulator movements. Last syllable of *perfect* shown in unshaded boxes; first syllable of *memory* shown in shaded boxes. Only oral tiers are shown. (a) Words spoken in word list; (b) words spoken as part of fluent phrase.

The changes in the posited gestural score can be seen in Figure 6. Because the velum lowering gesture (VEL [wide]) at the end of *seven* in Figure 6b overlaps the labial closure, the hiding is perceived as assimilation rather than deletion. Evidence for such hidden gestures (in some cases having reduced magnitude) has also been provided by a number of electropalatographic studies, where they have been taken as evidence of 'partial assimilation' (Barry, 1985; Hardcastle & Roach, 1979; Kohler, 1976 (for German)). Thus, from a gestural point of view, deletion (5a) and assimilation (5b) of final alveolars may involve exactly the same process—increase of overlap resulting in a hidden gesture.

When overlap is increased between two gestures on the same articulatory tier, rather than on different articulatory tiers as in the above examples, the increased overlap results in blending between the dynamical parameters of the two gestures rather than hiding. The trajectories of the tract variables shared by the two gestures are affected by the differing amounts of overlap. Evidence for such blending can be seen in examples like (6).

(6) /տեն թիմ/ → [տեհիմ]
Figure 6. Partial gestural score for two versions of *seven plus*, posited from observed articulator movements. Last syllable of *seven* shown in unshaded boxes; *plus* shown in shaded boxes. The starred [alveolar clo] gesture indicates that laterality is not represented in these scores. (a) Spoken at slow rate; (b) spoken at fast rate.

The apparent assimilation in this case, as well as in many other cases that involve conflicting requirements for the same tract variables, has been characterized by Catford (1977) as involving an accommodation between the two units. This kind of accommodation is exactly what is predicted by parameter blending, assuming that the same underlying mechanism of increased gestural overlap occurs here as in the examples in (5). The (partial) gestural scores hypothesized for (6), showing the increase in overlap, are displayed in Figure 7. The hypothesis of gestural overlap, and consequent blending, makes an specific prediction: the observed motion of the TT tract variables resulting from overlap and blending should differ from the motion exhibited by either of individual gestures alone. In particular, the location of the constriction should not be identical to that of either an alveolar or a dental, but rather should fall somewhere in between. If this prediction is confirmed, then three (superficially) different fluent speech processes—deletion of final alveolar stops in clusters, assimilation of final alveolar stops and nasals to following labials and velars, and assimilation of final alveolar stops to other tongue tip consonants—can all be accounted for as the consequence of increasing overlap between gestures in fluent speech.
Articulatory Gestures as Phonological Units

Figure 7. Hypothesized gestured score for two versions of ten themes. ten shown in unshaded boxes; themes shown in shaded boxes. Only oral tiers are shown. (a) Spoken with pause between words; (b) spoken as part of fluent phrase.

How does the gestural analysis of these fluent speech alternations compare with analyses proposed by other theories of non-linear phonology? Assimilations such as those in (6) have been analyzed by Clements (1985) as resulting from a rule that operates on sequences of alveolar stops or nasals followed by [+coronal] consonants. The rule, whose effect is shown in (7), delinks the place node of the first segment and associates the place node of the second segment to the first (by spreading).

Since the delinked features are assumed to be deleted, by convention, and not realized phonetically, the analysis in (7) predicts that the place of articulation of the assimilated sequence should be indistinguishable from that of the second consonant when produced alone. This claim differs from that made by the blending analysis, which predicts that the assimilated sequence should show the influence of both consonants. These conflicting predictions can be directly tested.

The overlap analysis accounts for a wider range of phenomena than just the assimilations in (6). The deletion of final alveolars (in clusters) and the assimilation of final alveolars to following stops in (5) were also shown to be cases of hiding due to increased gestural overlap. Clement's analysis does not handle these additional cases, and cannot be extended to do so without major reinterpretation of autosegmental formalisms. To see
that this is the case, suppose Clements' analysis is extended by eliminating the \(+\text{coronal}\) requirement on the second segment (for fluent speech). This would produce an assimilation for a case like (5b), but it would not be consistent with the data showing that the alveolar closure gesture is, in fact, still produced. To interpret a delinked gesture as one that is articulatorily produced, but auditorily hidden, would require a major change in the assumptions of the framework.

Within the framework of Sagey (1986), the cases of hiding in (5) could be handled, but the analysis would fail to capture the parallelism between these cases and the blending case in (6). In Sagey's framework, there are separate class nodes for each of the independent oral articulators, corresponding to the articulatory tiers. Thus, an assimilation like that in (5b) could be handled as in (8): the labial node of the second segment is spread to the preceding segment's place node, effectively creating a 'complex' segment involving two articulations.

However, the example in (6) could not be handled in this way. In Sagey's framework, complex segments can only be created in case there are different articulator nodes, whereas in (6), the same articulator is involved. Thus, an analysis in Sagey's framework will not treat the examples in (5) and (6) as resulting from a single underlying process. If the specific prediction made by the overlap and blending analysis for cases like (6) proves correct, this would be evidence that a unitary process (overlap) is indeed involved—a unity that is directly captured in the overlapping gesture approach, but not in Sagey's framework.

Finally we note that, in general, the gestural approach gives a more constrained and explanatory account of the casual speech changes. All changes are hypothesized to result from two simple mechanisms, which are intrinsically related to the talker's goals of speed and fluency—reduce the size of individual gestures, and increase their overlap. The detailed changes that emerge from these processes are epiphenomenal consequences of the 'blind' application of these principles, and they are explicitly generated as such by our model. Moreover, the gestural approach makes predictions about the kinds of fluent speech variation expected in other languages. Given differences between languages in the canonical gestural scores for lexical items (due to language-specific phasing principles), the same casual speech processes are predicted to have different consequences in different languages. For example, in a language such as Georgian in which stops in the canonical form are always released, word-finally and in clusters (Anderson, 1974), the canonical gestural score should show less overlap between neighboring stops than is the case in English. The gestural model predicts that overlap between gestures will increase in casual speech. But in a language such as Georgian, an increase of the same magnitude as in English would not be sufficient to cause hiding. Thus, no casual speech assimilations and deletions would be predicted for such a language, at least when the increase of gestural overlap is the same magnitude as for English.

The usefulness of internal duration and overlap among phonological elements has begun to be recognized by phonologists (Hammond, 1988; Sagey, 1988). For example, Sagey (1986, pp. 20-21) has argued that phonological association lines, which serve to link the features on separate tiers, 'represent the relation of overlap in time... Thus... the elements that they link...must have internal duration.' However, in nongestural phonologies, the consequences of such overlap cannot be evaluated without additional principles specifying how overlapping units interact. In contrast, in a gestural phonology, the nature of the interaction is implicit in the definition of the gestures themselves, as dynamical control regimes for a (model) physical system. Thus, one of the virtues of the gestural approach is that the consequences of overlap are tightly constrained and made explicit in terms of a physical model. Explicit predictions (e.g., about the relation between the constrictions formed by the tongue tip in themes and in ten themes, as well as about language differences) can be made that test hypotheses about phonological structures.
Articulatory Gestures as Phonological Units

In summary, a gestural phonology characterizes the movements of the vocal tract articulators during speech in terms of a minimal set of discrete gestural units and patterns of spatiotemporal organization among those units, using dynamic and articulatory models that make explicit the articulatory and acoustic consequences of a particular gestural organization (i.e., gestural score). We have argued that a number of phonological properties of utterances are inherent in these explicit gestural constellations, and thus do not require postulation of additional phonological structure. Distinctiveness (Browman & Goldstein, 1986, in press) and syllable structure (Browman & Goldstein, 1988) can both be seen in gestural scores. In addition, a number of postlexical phonological alternations (Browman & Goldstein, 1987) can be better described in terms of gestures and changes in their organization (overlap) than in terms of other kinds of representations.

2 RELATION BETWEEN GESTURAL STRUCTURES AND FEATURE GEOMETRY

In the remainder of this paper, we look more closely at the relation between gestural structures and recent proposals of feature geometry. The comparison shows that there is much overall similarity and compatibility between feature geometry and the geometry of phonological gestures (§ 2.1). Nevertheless, there are some differences. Most importantly, we show that the gesture is a cohesive unit, that is, a coordinated action of a set of articulators, moving to achieve a constriction that is specified with respect to its degree as well as its location. We argue that the gesture, and gestural scores, could usefully be incorporated into feature geometry (§ 2.2). The gestural treatment of constriction degree as part of a gestural unit leads, however, to an apparent disparity with how manner features are currently handled in feature geometry. We conclude, therefore (§ 3) by proposing a hierarchical tube geometry that resolves this apparent disparity, and that also, we argue, clarifies the nature of manner features and how they should be treated within feature geometry, or any phonological approach.

2.1 Articulatory geometry and gestural descriptors

In this section, the details of the gestural descriptor structures—the distinctive categories of the tract variable parameters—are laid out. Many aspects of these structures are rooted in long tradition. Jespersen (1914), for example, suggested an 'analphabetic' system of specifying articulatory place along the upper tract, the articulatory organ involved, and the degree of constriction. Pike (1943), in a more elaborated analphabetic system, included variables for impressionistic characterization of the articulatory movements, including 'crests,' 'troughs,' and 'glides' (movements between crests and troughs). More recently, various authors (e.g., Campbell, 1974; Halle, 1982; Sagey, 1986; Venneman & Ladefoged, 1973) have argued that phonological patterns are often formed on the basis of the moving articulator used (the articulator set, in the current system). The gestural structures described in this paper differ from these accounts primarily in the explicitness of the functional organization of the articulators into articulatory gestures, and in the use of a dynamic model to characterize the coordinated movements among the articulators.

The articulatory explicitness of the gestural approach leads to a clear-cut distinction between features of input and features of output. That is, a feature such as 'sonority' has very little to do with articulation, and a great deal to do with acoustics (Ladefoged, 1988a,b). This difference can be captured by contrasting the input to the speech production mechanism—the individual gestures in the lexical entry—and the output—the articulatory, aerodynamic and acoustic consequences of combining several gestures in different parts of the vocal tract. The gestural descriptors, then, characterize the input mechanism—they are the 'features' of a purely articulatory phonology. Most traditional feature systems, however, represent a conflation of articulatory and acoustic properties. In order to avoid confusion with such combined feature systems, and in order to emphasize that gestural descriptors are purely articulatory, we retain the non-standard terminology developed in the computational model for the category names of the gestural descriptor values.

In § 2.1.1, we discuss the descriptors corresponding to the articulator sets and show how they are embedded in a hierarchical articulatory geometry, comparable to recent proposals of feature geometry. In §§ 2.1.2-5, we examine the other descriptors in turn, demonstrating that they can be used to define natural classes, and showing how the differences...
between these descriptors and other feature systems stem from their strictly articulatory and/or dynamic status.

2.1.1 Anatomical hierarchy and articulator sets

The gestural descriptors listed in Figure 2 are not hierarchically organized. That is, each descriptor occupies a separate dimension describing the movement of a gesture. However, there is an implicit hierarchy for the sets of articulators involved. This can be seen in Figure 8, which redispays (most of) the inventory of articulator sets and associated parameter dimensions from Figure 2, and adds a grouping of gestures into a hierarchy based on articulatory independence. Because the gestures characterize movements within the vocal tract, they are effectively organized by the anatomy of the vocal tract. TT and TB gestures share the individual articulators of tongue body and jaw, so they define a class of Tongue gestures. Similarly, both LIPS and Tongue gestures use the jaw, and are combined in the class of Oral gestures. Finally, Oral, velic (VEL), and glottal (GLO) constitute relatively independent subsystems that combine to form a description of the overall Vocal Tract. This anatomical hierarchy constitutes, in effect, an articulatory geometry.

![Articulatory geometry tree](image)

Figure 8. Articulatory geometry tree.

The importance of an articulatory geometry has repeatedly been noted, for example in the use of articulatory subsystems by Abercrombie (1967) and Anderson (1974). More recently, it has formed the basis of a number of proposals of feature geometry (Clements, 1985; Ladefoged, 1988a,b; Ladefoged & Halle, 1988; McCarthy, 1988; Sagey, 1986). The hierarchy of the moving articulators is central to all these proposals of featural organization, although the evidence discussed may be phonological patterns rather than physiological structure. Leaving aside manner features (to be discussed in §§ 2.2.1 and 3), the various hierarchies differ primarily in the inclusion of a Supralaryngeal node in the feature geometries of Clements (1985) and Sagey (1986), and a Tongue node in the articulatory geometry diagrammed in Figure 8.

There is no Supralaryngeal node included in the articulatory geometry of Figure 8, because this geometry effectively organizes the vocal tract input. As we will argue in § 3, the Supralaryngeal node is important in characterizing the output of the vocal tract. However, using the criterion of articulatory independence, we see no anatomical reason to combine any of the three major subsystems into a higher node in the input hierarchy. Rather than being part of a universal geometry, further combinations of the laryngeal, velic, and Oral subsystems into class nodes such as Supralaryngeal, or Central (Oral) vs. Peripheral (velic and laryngeal), should be invoked where necessitated by language-particular organization. For example, the central-peripheral distinction was argued to exist for Toba Batak (Hayes, 1986).

The Tongue node in Figure 8 is proposed on anatomical grounds, again using the criterion of articulatory independence (and relatedness). That is, the TT articulator set shares two articulators with the TB articulator set—the tongue body and the jaw. Put another way, the tongue is an integral structure that is clearly separate from the lips. There is some evidence for this node in phonological patterns as well. A number of articulations made with the tongue cannot be clearly categorized as being made with either TT or TB. For example, laterals in Kuman (Papua New Guinea) alternate between velars and coronals (Lynch, 1983, cited in McCarthy, 1988). They are always Tongue articulations, but are not categorizable as exclusively TT or TB. Rather, they require some reference to both articulator sets. This is also the case for English laterals, which can alternate between syllable-initial coronals and syllable-final velars (Ladefoged, 1982).

Palatal and palatoalveolar consonants are another type of articulation that falls between TT and TB articulations (Keating, 1988; Ladefoged &
Maddieson, 1986; Recasens, in preparation). Keating (1988) suggests that the intermediate status of palatals—partly TT and partly TB—can be handled by treating palatal consonants as complex segments, represented under both the tongue body and tongue tip/blade nodes. However, without the higher level Tongue node, such a representation equates complex segments such as labio-velars, consisting of articulations of two separate articulators (lips and tongue), with palatalts, arguably a single articulation of a single predorsal region of the tongue (Recasens, in preparation). With the inclusion of the Tongue node, labio-velars and palatalts would be similar in being double Oral articulations, but different in being LIPS plus Tongue articulations vs. two Tongue articulations. Thus, the closeness of the articulations is reflected in the level of the nodes.

This evidence is suggestive, but not conclusive, on the role of the Tongue node in phonological patterns. We predict that more evidence of phonological patterns based on the anatomical interdependence of the parts of the tongue should exist. One type of evidence should result from the fact that one portion of the tongue cannot move completely independently of the other portions. This lack of independence can be seen, for example, in the suggestion that the tongue body may have a characteristically more backed shape for consonants using the tip/blade in dentals as opposed to alveolars (Ladefoged & Maddieson, 1986; Stevens et al., 1986). We would expect to find blocking rules based on such considerations.

2.1.2 Constriction degree (CD)

CD is the analog within the gestural approach of the manner feature(s). However, it is crucial to note that, unlike the manner classes in feature geometry, CD is first and foremost an attribute of the gesture—the constriction made by the moving set of articulators—and therefore, at the gestural level, is solely an articulatory characterization. (This point will be elaborated in § 2.2.1). In our model, CD is a continuum divided into the following discrete ranges: [closed], [critical], [narrow], [mid], and [wide] (Ladefoged, 1988b, refers to such a partitioning of a continuum as an ‘ordered set’ of values). The two most closed categories correspond approximately to acoustic stops and fricatives; the names used for these categories indicate that these values are articulatory rather than acoustic. Thus, the second degree of constriction, labelled [critical], indicates that critical degree of constriction for a gesture at which some particular aerodynamic consequences could obtain if there were appropriate air flow and muscular tension. That is, the critical constriction value permits friction (turbulence) or voicing, depending on the set of articulators involved (oral or laryngeal). Similarly, [closed] refers to a tight articulatory closure for that particular gesture; the overall state of the vocal tract might cause this closure to be, acoustically, either a stop or a sonorant. This, in turn, will be determined by the combined effects of the concurrently active gestures. § 3 will discuss in greater detail how we account for natural classes that depend on the consequences of combining gestures.

The categorical distinctions among [closed], [critical], and the wider values (as a group) are clearly based on quantal articulatory-acoustic relations (Stevens, 1972). The basis for the distinction among wider values is not as easy to find in articulatory-acoustic relations, although [narrow] might be identified with Catford's (1977) [approximant] category. Catford is also careful to define 'articulatory stricture' in solely articulatory terms. He defines [approximant] as a constriction just wide enough to yield turbulent flow under high airflow conditions such as in open glottis for voicelessness, but laminar flow under low airflow conditions such as in voicing. The other descriptors are required to distinguish among vowels. For example, contrasts among front vowels differing in height are represented as [palatal] constriction locations (cf. Wood, 1982) with [narrow], [mid], or [wide] CDs, where these categories might be established on the basis of sufficient perceptual and articulatory contrast in the vowel system (Lindblom, 1986; Lindblom et al., 1983). If additional differentiation is required, values are combined to indicate intermediate values (e.g., [narrow mid]). In addition, [wide] vs. [narrow] can be used to distinguish the size of glottal aperture—the CD for GLO—associated with aspirated and unaspirated stops, respectively.

2.1.3 Constriction location (CL)

Unlike CD, which differs from its featural analog of manner by being articulatory rather than acoustic, both CL and its featural analog of place are articulatory in definition. However, CL differs from place features in not being hierarchically related to the articulator set. That is, the set of articulators moving to make a constriction, and the location of that constriction, are two independent (albeit highly related) dimensions of a gesture. Thus, we use the label 'Oral' rather than 'place' in the articulatory hierarchy, not only to emphasize the anatomical
nature of the hierarchy, but also to avoid the conflation of moving articulator and location along the tract that 'place' conveys.

The constriction location refers to the location on the upper or back wall of the vocal tract where a gestural constriction occurs, and thus is separate from, but constrained by, the articulator set moving to make the constriction. Figure 9 expands the articulator sets, the CL descriptor values and the possible relations between them: the locations where a given set of articulators can form a constriction. Notice that each articulator set maps onto a subset of the possible constriction locations (rather than all possible CLs), where the subset is determined by anatomical possibility. Notice also that there is a non-unique mapping between articulator sets and CL values. For example, both TT and TB can form a constriction at the hard palate; indeed, it may be possible for TB to form a constriction even further forward in the mouth. Thus constriction location cannot be subsumed under the moving articulator hierarchy, contrary to the proposals by Ladefoged (1988a) and Sagey (1986), among others.

![Figure 9](image)

Figure 9. Possible mappings between articulator sets and constriction locations.

This can be seen most clearly in the case of the [labial] and [dental] locations, where either the LIPS or TT articulator sets can form constrictions, as shown in (9) (the unusual linguo-labials are discussed in Maddieson 1987). (A similar matrix is presented in Ladefoged & Maddieson, 1986, but not as part of a formal representation.) That is, the [labial] constriction location cannot be associated exclusively with the LIPS articulator set. Similarly, the [dental] constriction location cannot be associated exclusively with the TT articulator set. Thus, we view CL as an independent cross-classifying descriptor dimension whose values cannot be hierarchically subsumed uniquely under particular articulator sets.

We use multivalued (rather than binary-valued) CL descriptors, following Ladefoged (1988b), since the CL descriptor values correspond to categorical ranges of the continuous dynamic parameter. In the front of the mouth, the basis for the discrete ranges of CL presumably involve the actual differentiated anatomical landmarks, so that parameter values are tuned with respect to them. There may, in addition, be relatively invariant auditory properties associated with the different locations (Stevens, 1989). For the categories that are further back (palatal and beyond), Wood (1982) hypothesizes that the distinct CLs emerge from the alignment of Stevens' quantal considerations with the positioning possibilities allowed by the tongue musculature. To the extent that this set of descriptor values is too limited, it can, again, be extended by combining descriptors, e.g., [palatal velar], or by using 'retracted' and 'advanced' (Principles of the IPA, 1949).

2.1.4 Constriction shape (CS)

In some cases, gestures involving the same articulator sets and the same values of CL and CD may differ in the shape of the constriction, as looked at in the frontal, rather than sagittal, plane. For example, constrictions involving TT gestures may differ as to whether they are formed with the actual tip or blade of the tongue, the shape of the constriction being 'wider' in the third dimension if produced with the blade. The importance of this difference has been built into recent feature systems as apical vs. laminal (Ladefoged, 1988a), or [distributed] (Sagey, 1986).
Some method for controlling such differences needs to be built into our computational model. An additional TT tract variable (TTR) that specifies the orientation (angle) of the tongue tip in the sagittal plane with respect to the CL and CD axes is currently being incorporated into the task dynamic model. It is possible that different settings of this variable will be able to produce the required apical/laminal differences, as well as allowing the sublaminal contact involved in extreme retroflex stops (Ladefoged & Maddieson, 1986).

For TB gestures, an additional tract variable is also required to control cross-sectional shape. One of the relevant shape differences involves the production of laterals, in which at least one of the sides of the tongue does not make firm contact with the molars. Ladefoged (1980) suggests that the articulatory maneuver involved is a narrowing of the tongue volume, so that it is pulled away from the sides of the mouth. Such narrowing is an attractive option for an additional TB shaping tract variable. In this proposal, an alveolar lateral would essentially involve two gestures: a TT closure, and a TB gesture with a [narrowed] value for CS and perhaps defaults for CL and CD. (Some further specification of TBCD would clearly be required for lateral fricatives, as opposed to lateral approximants). In this sense, laterals would be complex constellations of gestures, as suggested by Ladefoged and Maddieson (1986), and similar to the proposal of Keating (1988) for treating palatals as complex segments. Another role for a TB shaping tract variable might involve bunching for rhotics (Ladefoged, 1980). Finally, it is unclear whether an additional shape parameter is required for LIPS gestures. It might be required to describe differences between the two kinds of rounding observed in Swedish (e.g., Lindau, 1978; Linker, 1982). On the other hand, given proper constraints on lip shape (Abry & Bøe, 1986), it may be possible to produce all the required lip shapes with just LA and LP.

2.1.5 Dynamic descriptors

The stiffness \((k) \) of a gesture is a dynamical parameter, inferred from articulatory motions, that has been shown to vary as a function of gestural CD, stress and speaking rate (Browman & Goldstein, 1985; Kelso et al., 1985; Ostry & Munhall, 1985). In addition, however, we hypothesize that stiffness may be tuned independently, so that it can serve as the primary distinction between two gestures. /j/ and /w/ are two cases in which gestural stiffness as an additional independent parameter may be specified. /ju/ is a TB [narrow palatal] gesture, and /uw/ is a complex formed by a TB [narrow velar] gesture and a LIPS [narrow protruded] gesture. Our current hypothesis is that these gestures have the same CD and CL as for the corresponding vowels (/i/ and /u/), but that they differ in having an [increased] value of stiffness. This is similar to the articulatory description of glides in Catford (1977). Finally, it is possible that the stiffness value that governs the rate of movement into a constriction is related to the actual biomechanical stiffness of the tissues involved. If so, it would be relevant to those gestures that, in fact, require a specific muscular stiffness: trills and taps likely involve characteristic values of oral gesture stiffness, and pitch control and certain phonation types require specified vocal fold stiffnesses (Halle & Stevens, 1971; Ladefoged, 1988a).

2.2 The representation of phonological units

In § 2.1, we laid out the details of gestural descriptors and how they are organized by an articulatory geometry. Setting aside for the moment the critical aspects of gestures discussed in § 1.3 (internal duration and overlap), the differences between feature geometry and the organization of gestural descriptors have so far been comparatively minor—primarily the proposed Tongue node and the non-hierarchical relation between constriction location and the moving articulators. In this section, we consider two ways in which a gestural analysis suggests a different organization of phonological structure from that proposed by the feature geometries referred to in § 2.1.1. First, we present evidence that gestures function as cohesive units of phonological structure (§ 2.2.1). Second, we discuss the advantages of the gestural score as a phonological notation (§ 2.2.2).

2.2.1 The gesture as a unit in phonological patterns

In Figure 8, gestures are in effect the terminal nodes of a feature tree. Notice that the constriction degree, as well as constriction location, constriction shape and stiffness, is part of the descriptor bundle. That is, constriction degree is specified directly at the articulator node—it is one dimension of gestural movement. Looked at in terms of the gestural score (e.g., Figure 3), successive units on a given oral tier contain specifications for both constriction location and
degree of that articulator set. This positioning of CD differs from that proposed in current feature geometries. While CL and CS (or their analogs) are typically considered to be dependents of the articulator nodes, CD (or its analogs) is not. Rather, some of the closest analogs to CD—[stricture], [continuant], and [sonorant]—are usually associated with higher levels, either the Supralaryngeal node (Clements, 1985) or the Root node (Ladefoged, 1988a,b; Ladefoged & Halle, 1988; McCarthy, 1988; Sagey, 1986). Is there any evidence, then, that the unit of the gesture plays a role in phonological organization? Within the approach of feature geometry, such evidence would consist, for example, of rules in which an articulator set and the degree and location of the constriction it forms either spread or delete together, as a unitary whole.

It is in fact generally assumed, implicitly although not explicitly, that velic and glottal features have this type of unitary gestural organization. That is, features such as [+nasal] and [-voice] combine the constriction degree (wide) along with the articulator set (velum or glottis). Assuming a default specification for these features ([-nasal] and [+voice]), then denasalization consists of the deletion of a nasal gesture, and intervocalic voicing of the deletion of a laryngeal gesture. Additional implicit use of a gestural unit can be found in Sagey's (1986) proposal that [round] be subordinate to the Labial node. This is exactly the organization that a gestural analysis suggests, since [round] is effectively a specification of the degree and nature of the constriction of the lips.

It is in the case of primary oral gestures that proposals positioning CD at the gestural level and those positioning it at higher levels contrast most sharply. The inherent connection among all the component aspects of making a constriction, or in other words, the unitary nature of the gesture, can be seen mostly clearly when oral gestures are deleted, a phenomenon sometimes described as delinking of the Place (or Supralaryngeal) node—debuccalization. In a gestural analysis, when the movement of an articulator to make a constriction is deleted, everything about that constriction is deleted, including the constriction degree.

For example, Thráinsson (1978, cited in Clements & Keyser, 1983) demonstrates that in Icelandic, the productive phenomenon whereby the first of a sequence of two identical voiceless aspirated stops is replaced by [h], consists of deleting the first set of supralaryngeal features.

This set of supralaryngeal features corresponds to the unit of an oral gesture; it includes the constriction degree, whether described as [clo], [stop] or [-continuant]. Thus, in this example, the entire oral gesture is deleted.

Another example is cited in McCarthy (in press), using data from Straight (1976) and Lombardi (1987). In homorganic stop clusters and affricates (with an intervening word boundary) in Yucatec Maya, the oral portion of the initial stop is deleted—for example, /k支行/ → /hktor, and (affricate) /ts#tI/ → /s#t/. Again in this case the constriction degree is deleted along with the place, supporting a gestural analysis: the entire oral closure gesture is deleted. Note that McCarthy effectively supports this analysis, in spite of his positing [continuant] as dependent on the Root node, when he says 'a stop becomes a segment with no value for [continuant], which is incompatible with supraglottal articulation.'

Thus, there is some clear evidence in phonological patterning for the association of CD with the articulator node. This aspect of gestural organization is totally compatible with the basic approach of feature geometry, requiring only that CD be linked to the articulator node rather than to a higher level node. In § 3, we will show how this gestural affiliation of CD is also compatible with phonological examples in which CD is seemingly separable from the gesture—where it is ‘left behind’ when a particular articulator-CL combination is deleted, or where it appears not to spread along with the articulatory set and CL. For now, we turn to a second aspect of the gestural approach that could usefully be incorporated into feature geometry, this one involving the use of the gestural score as a two-dimensional projection of the inherently three-dimensional phonological representation.

2.2.2 Gestural scores, articulatory geometry, and phonological units

The gestural score, in particular the 'point' form in Figure 4, is topologically similar to a nonlinear phonological representation. When combined with the hierarchical articulatory geometry, the gestural score captures several relevant dimensions of a nonlinear representation simultaneously, in a clear and revealing fashion. Figure 10 shows a gestural score for palm, using point notation and association lines, combined with the articulatory geometry on the left. Note that the geometry tree is represented on its side, rather than the more usual up-down orientation.
This seemingly trivial point in fact is a very useful consequence of using gestural scores as phonological notation, as we shall see. It permits spatial organization such as the articulatory geometry, which is represented on the vertical axis, to be separated from temporal information including sequencing of phonological units, which is represented on the horizontal axis. Such a separation is particularly useful in those instances in which the gestures in a phonological unit are not simultaneous.

For example, prenasalized stops are single phonological units consisting of a sequence of nasal specifications. Figure 11a depicts a gestural score for prenasalized [mb], which contains a closure gesture on the LIPS tier associated with a sequence of two gestures on the VEL tier, one with CD = [wide] followed by one with CD = [clo]. Double articulations also constitute a single phonological unit. Figure 11b displays a gestural score for [gθ], which consists of a [clo labial] gesture on the LIPS tier associated with a [clo velar] gesture on the TB tier. Sagey (1986) terms the first type of unit a contour segment, and the second type a complex segment, a terminology that is an apt description of the two figures.

Compare the representations in Figures 11a and 11b to those in Figures 11c and 11d, which are Sagey's (1986) feature geometry specifications of the same two phonological units. In the feature geometry representation, the two types of segments appear to be equally sequential, or equally non-sequential. This is a consequence—an unfortunate consequence—of conflating two uses of branching notation, that of indicating (order-free) hierarchical information and that of indicating sequencing information. Thus, in Figure 11d (on the right), the branching lines represent order-free branching in a hierarchical tree. In Figure 11c, however, the branching lines represent the associations between two ordered elements and a single node on another tier. This conflation results from the particular choice of how to project an inherently three-dimensional phonological structure (feature hierarchy x phonological unit constituency x time) onto two dimensions.

In the gestural score, the two-dimensional projection avoids this conflation of the two uses of branching notation. Here nodes always represent gestures and lines are always association (or phasing) lines. Thus any branching, as in Figure 11a, always indicates temporal information about sequencing. The hierarchical information about the articulatory geometry is present in the organization of the articulatory tiers, and is thus represented (once) by a sideways tree all the way at the left of the gestural score (as in Figure 10). In this way, the gestural score retains the virtues of earlier forms of phonological notation in which sequencing information was clearly distinguishable, while also providing the benefits of the spatial geometry that organizes the tiers hierarchically. It would, of course, be possible to adopt this kind of representation within feature geometry.
Finally, the reader may have observed that, in discussions to now, constituency in phonological units has been indicated solely by using association lines between gestures. In particular, there has been no separate representation of prosodic phonological structure. This is not an inherent aspect of a phonology of articulatory gestures; rather, it is the result of our current research strategy, which is to see how much structure inheres directly in the relations among gestures, without recourse to higher level nodes. However, once again, it is possible to integrate the gestural score with other types of phonological representation. To exemplify how the gestural score can be integrated with explicit phonological structure, Figure 12 displays a mapping between the gestural score for \textit{palm} and a simplified version of the prosodic structure of Selkirk (1988), with the articulatory geometry indicated on the left.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure11}
\caption{Comparison of gestural score and feature geometry representations for contour and complex segments. (a) Gestural score for contour segment [\textipa{mB}]; (b) gestural score for complex segment [\textipa{gb}]; (c) feature geometry for contour segment [\textipa{mB}]; (d) feature geometry for complex segment [\textipa{gb}].}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure12}
\caption{Gestural score for \textit{palm} [\textipa{pam}] in point notation, mapped on to prosodic structure, with articulatory hierarchy on left.}
\end{figure}
In short, although gestures and gestural scores originated in a description of articulator movement patterns, they nevertheless provide constructs that are useful for phonological representation. Gestures constitute an organization (combining a moving articulator set with the degree and location of the constriction formed) that can act as a phonological unit. Gestural scores provide a useful notation for nonlinear phonological representations, one that permits phonological constituency to be expressed in the same representation with 'phonetic' order information, which is indicated by the relative positions of the gestures in the temporal matrix. The gestures can be grouped into higher-level units, using either association lines or a mapping onto prosodic structure, regardless of the simultaneity, sequentiality, or partial overlap of the gestures. In addition, the articulatory geometry organizing the tiers can be expressed in the same representation.

3 TUBE GEOMETRY AND CONSTRICTION DEGREE HIERARCHY

So far, we have been treating individual gestures as the terminal nodes of an anatomical hierarchy. From this perspective, articulatory geometry serves as a way of creating natural classes of gestures on anatomical grounds. In this section, we turn to the vocal tract as a whole, and consider how additional natural classes emerge from the combined effect (articulatory, aerodynamic and acoustic consequences) of a set of concurrent gestures. We argue that these natural classes can best be characterized using a hierarchy for constriction degree within the vocal tract based on tube geometry.

Rather than viewing the vocal tract as a set of articulators, organized by the anatomy, tube geometry views it as a set of tubes, connected either in series or in parallel. The sets of articulators move within these tubes, creating constrictions. In other words, articulatory gestures occur within the individual tubes. More than one gesture may be simultaneously active; together, these gestures interact to determine the overall aerodynamic and acoustic output of the entire linked set of tubes. Similarities in the tube consequences of a set of different gestures may lead to similar phonological behavior: this is the source of acoustic features (Ladefoged, 1988a) such as [grave] and [flat] (Jakobson, Fant, & Halle, 1969) that organize different gestures (in our terms) according to standing wave nodes in the oral tube (Ohala, 1985; Ohala & Lorentz, 1977).

Within this tube perspective, there is a vocal tract hierarchy that characterizes an instantaneous time slice of the output of the vocal tract. Such a hierarchy may appear identical to the feature geometry of Sagey (1986). There are, however, two crucial differences. Unlike Sagey's root node, which 'corresponds neither to anatomy of the vocal tract nor to acoustic properties' (1986, p. 16), the highest node in the vocal tract hierarchy characterizes the physical state of the vocal tract at a single instant in time. In addition, tube geometry characterizes manner—CD—at more than just the highest level node. CD is characterized at each level of the hierarchy. Thus, each of the tubes and sets of compound tubes in the hierarchy will have its own effective constriction degree that is completely predictable from the CD of its constituents, and hence ultimately from the CD of the currently active gestures. At the vocal tract level, the effective CD of the supralaryngeal tract, taken together with the initiator power provided by the lungs, determines the nature of the actual airflow through the vocal tract: none (complete occlusion), turbulent flow, or laminar flow. This vocal tract hierarchy thus serves as the basis for a hierarchy for CD.

The important point here for phonology is that, in the output system, CD exists simultaneously at all the nodes in the vocal tract hierarchy—it is not isolable to any single node, but rather forms its own CD hierarchy. As we argue in § 3.2, all levels of the hierarchy are potentially important in accounting for phonological regularities, and may form the basis of a natural class. First, however, in § 3.1, we expand on the nature of tube geometry.

3.1 How tube geometry works

Figure 13 provides a pictorial representation of the tubes that constitute the vocal tract, embedded in the space defined by the anatomical hierarchy of articulatory geometry, in the vertical dimension, and by the constriction degree hierarchy of tube geometry, in the horizontal dimension. The constriction action of individual gestures is schematically represented by the small grey disks. Thus, the two dimensions in the figure serve to organize the gestures occurring in the vocal tract tubes, vertically in terms of articulatory geometry, and horizontally in terms of tube geometry. Looking at the tube structure in the center, we can see that the vocal tract
branches into three distinct tubes or airflow channels: a Nasal tube, a Central tongue channel and a Lateral tongue channel. The complex is terminated by GLO gestures at one end. At the other end, the Central and Lateral channels are together terminated by LIPS gestures.

The tube geometry tree, shown at the top of the figure, reflects the combinations of the tubes and their terminators. The tube level of the tree has five nodes, one for each of the three basic tubes and the two terminators. Within each of these basic tubes, the CD will be determined by the CD of the gestures acting within that tube, which are shown as subordinates to the tube nodes. For example, the CD of TT gestures will contribute to determining the CD of the Central tube. TB gestures will contribute to the Central and/or Lateral tube, depending on the constriction shape of the TB gesture. Each of the superordinate nodes corresponds to a tube junction, forming a compound tube from simpler tubes and/or the termination of a tube. Thus, the Central and Lateral tubes together form a compound tube labelled the Tongue tube. The compound Tongue tube is terminated by the LIPS configuration, which combines with the Tongue tube to form an Oral tube. The Oral and Nasal tubes form another compound tube, the Supralaryngeal, which is terminated by GLO gestures to form the overall Vocal Tract compound tube.

Figure 13. Vocal tract hierarchy: Articulatory and tube geometry.
The effective CD at each superordinate node can be predicted from the CD of the tubes being joined and the way they are joined. When tubes are joined in parallel, the effective CD of the compound tube has the CD of the widest component tube, that is, the maximum CD. When they are joined in series, the compound tube has the CD of the narrowest component tube, that is, the minimum CD. Terminations and multiple constrictions within the same tube work like tubes connected in series. Using these principles, it is possible to 'percolate' CD values from the values for individual gestures up to the various nodes in the hierarchy. Table 1 shows the possible values for CD of individual gestures, and Table 2 shows how to determine the CD values at each successive node up through the Supralaryngeal node, referred to hereafter as the Supra node (the Vocal Tract node will be discussed below).

Table 1. Possible constriction degree (CD) values at gestural tract variable level: open = (narrow or mid or wide).

<table>
<thead>
<tr>
<th>Gesture</th>
<th>CD</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. LIPS</td>
<td>CD</td>
<td>clo crit open</td>
</tr>
<tr>
<td>b. TT</td>
<td>[CD]</td>
<td>clo crit open</td>
</tr>
<tr>
<td>c. TB</td>
<td>[CD, CS = normal]</td>
<td>clo crit open</td>
</tr>
<tr>
<td>d. TB</td>
<td>[CD, CS = narrowed]</td>
<td>clo crit open</td>
</tr>
<tr>
<td>e. VEL</td>
<td>[CD]</td>
<td>clo crit open</td>
</tr>
<tr>
<td>f. GLO</td>
<td>[CD]</td>
<td>clo crit open</td>
</tr>
</tbody>
</table>

GLO [crit] is value appropriate for Voicing

Table 2. Percolation of CD up through Supralaryngeal node.

<table>
<thead>
<tr>
<th>Node</th>
<th>CD</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Nasal</td>
<td>CD = VEL [CD]</td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td>CD = TB [CD, CS = narrowed]</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>CD = MIN (TT [CD], TB [CD, CS = normal])</td>
<td></td>
</tr>
<tr>
<td>b. Tongue</td>
<td>CD = MAX (Central [CD], Lateral [CD])</td>
<td></td>
</tr>
<tr>
<td>c. Oral</td>
<td>CD = MIN (Tongue [CD], LIPS [CD])</td>
<td></td>
</tr>
<tr>
<td>d. Supra</td>
<td>CD = MAX (Oral [CD], Nasal [CD])</td>
<td></td>
</tr>
</tbody>
</table>

The percolation principles follow from aerodynamic considerations. Basically, airflow through a tube system will follow the path of least resistance, as we can illustrate with examples of nasals and laterals. The Oral and Nasal tubes are connected in parallel, forming a compound Supralaryngeal tube. If the Oral tube is [closed] but the Nasal tube is [open], Table 2d indicates that the CD of the combined Supra tube will be the wider of the two openings, i.e., [open], as it is in a nasal stop. To take a less obvious example, consider the case where the Nasal tube is [open], but the Oral tube is [crit], i.e., appropriate for turbulence generation under the appropriate airflow conditions. Table 2d predicts that in this case as well the Supra CD is [open], implying that there will be no turbulence generated. This in turn predicts that nasalized fricatives, which consist of exactly the VEL [open] and Oral [crit] gestures, should not exist. That is, given that, at normal airflow rates, the air in this configuration will tend to follow the path of least resistance through the [open] nasal passage, nasalized fricatives would require abnormal degrees of total airflow in order to generate airflow through the [crit] constriction that is sufficient to produce turbulence.

Ohala (1975) has proposed that such nasalized fricatives are, indeed, rare, precisely because they are hard to produce. As Ladefoged and Maddieson (1986) argue, this could account for alternations in which the nasalized counterparts of voiced fricatives are voiced approximants, such as in Guarani (Gregores & Suárez, 1967, in Ladefoged & Maddieson, 1986). However, they also present evidence from Schadeberg (1982) for a nasalized labio-dental fricative in Umbundu. This suggests that the percolation principles may be overridden in certain special cases, perhaps by increased airflow settings.

At the highest level, that of the Vocal Tract, the glottal (GLO) CD and stiffness and the Supra CD combine with initiator (pulmonic) action to determine the actual aerodynamic and acoustic characteristics of airflow through the vocal tract. At this point, then, it becomes more appropriate to label the states of the Vocal Tract in terms of the characteristics of this 'output' airflow, rather than in terms of the CD, which is one of its determining parameters. A gross, but linguistically relevant, characterization of the output distinguishes the three states defined in Table 3a: occlusion, noise and resonance. Assuming some 'average' value for initiator power, Table 3b shows how GLO and Supra CD jointly determine these properties. A complete closure of either system results in occlusion. If GLO is [crit] (appropriate position for voicing, assuming also appropriate stiffness), then it combines with an open Supralaryngeal tract to produce resonance. Any other condition produces
noise. In some cases, e.g., GLO [open] and Supra [open], this is weak noise generated at the glottis (aspiration). In other cases, e.g., Supra [crit], the noise is generated in the Oral tube (frication). Further details of the output, such as where the turbulence is generated, and whether voicing accompanies occlusion or noise, are beyond our scope here. Ohala (1983) gives many examples of how the principles involved are relevant to aspects of phonological patterning.

Table 3. Acoustic consequences at Vocal Tract level.

<table>
<thead>
<tr>
<th>VT outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>occlusion:</td>
</tr>
<tr>
<td>no airflow through VT; silence or low-amplitude voicing</td>
</tr>
<tr>
<td>noise:</td>
</tr>
<tr>
<td>turbulent airflow</td>
</tr>
<tr>
<td>resonance:</td>
</tr>
<tr>
<td>laminar airflow with voicing; formant structure</td>
</tr>
<tr>
<td>b. VT [CD]</td>
</tr>
<tr>
<td>= occlusion / Supra [clo] OR GLO [clo]</td>
</tr>
<tr>
<td>= resonance / Supra [open] AND GLO [crit]</td>
</tr>
<tr>
<td>= noise / otherwise</td>
</tr>
</tbody>
</table>

3.2 The constriction degree hierarchy

The importance of tube geometry for phonology resides in the fact that constriction degree is not isolable to any single level of the vocal tract. Rather, constriction degree exists at a number of levels simultaneously, with the CD at each level in this hierarchy defining a potential natural class. In this section, we present some examples in which CD from different levels is phonologically relevant, and argue that the CD hierarchy is important and clarifying for any featural system, as well as for gestural phonology.

We are proposing (1) that there is a universal geometry for CD in which all nodes in the CD hierarchy are simultaneously present, and (2) that different CD nodes are used to represent different natural classes. This approach differs from that adopted in current feature geometries, in which manner features such as [nasal], [sonorant], [continuant] or [consonantal] are usually represented at a single level in the feature hierarchy. Different geometries, however, choose different levels. For example, [nasal] has been variously considered to be a feature dependent on the highest (Root) node (McCarthy, 1988), on the Supralaryngeal node (via a manner node) (Clements, 1985), or on a Soft Palate node (Ladefoged, 1988a,b; Ladefoged & Halle, 1988; Sagey, 1986). It is possible that this variability in the treatment of [nasal], and other features, reflects the natural variation in the CD hierarchy, such that different phonological phenomena are captured using CD at different levels in the hierarchy.

To see how this might work, consider the four hierarchies in Figure 14, which use the tube geometry at the top of Figure 13 to characterize the linked CD structures for a vowel, a lateral, a nasal, and an oral stop. Since tube geometry plays the same role in the representation as the articulatory geometry in Figure 10, the tube hierarchies are rotated 90 degrees just as the anatomical hierarchy was. The circles are a graphic representation of the CD for each node, with the filled circles indicating CD = [clo], the wavy lines indicating CD = [crit], and the open circles indicating CD = [open] (the symbols indicate occlusion, noise, and resonance, respectively, at the Vocal Tract level). These CD hierarchies express the various classificatory (featural) similarities and dissimilarities among the four segments, but they do so at different levels.

Table 4. Default CD values for basic tubes and terminators.

<table>
<thead>
<tr>
<th>Segment</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal</td>
<td>clo</td>
</tr>
<tr>
<td>Lateral</td>
<td>Central [CD]</td>
</tr>
<tr>
<td>Central</td>
<td>open</td>
</tr>
<tr>
<td>LIPS</td>
<td>open</td>
</tr>
<tr>
<td>GLO</td>
<td>crit</td>
</tr>
</tbody>
</table>

Default values are determined by the effect of the model articulators' neutral configuration within a tube.
For example, the nasal has the same characterization as the vowel and lateral at the Supralaryngeal and Vocal Tract levels, but diverges at lower levels. This aspect of the CD hierarchy thus defines a phonological natural class consisting of nasals, laterals, and vowels, where the class is characterized by Supra [open] and VT ['open' = resonance]. This natural class is typically represented by the feature [sonorant], although different feature systems select one or the other of these levels in their definition of sonority. For example, Ladefoged's (1988a,b) acoustic feature distinction of [sonorant] utilizes the identity of the value in the CD hierarchy at the VT level. That is, for Ladefoged [+sonorant] differs from [-sonorant] in terms of output at the VT level. However, for Chomsky and Halle (1968) and Stevens (1972), it is the identity at the Supralaryngeal level that characterizes sonority, since they consider /h/ and /l/ to be sonorants even though they differ from the nasal, vowel and lateral at the VT level.
At the Oral level (and below), the nasal and stop display the same linked CD structure, which differs from that of the lateral and that of the vowel. That is, nasals and stops form a natural class in having Oral [clo], whereas laterals and vowels form a class in having Oral [open]. This difference in CD resides at a lower level of the hierarchy than the Vocal Tract or Supralaryngeal levels. And at the lowest levels, the Tube and Gestural, the nasal differs from the stop, lateral, and vowel in having both a Nasal [CD] and VEL [CD] that are [open]. Thus, constriction degree at various levels can serve to categorize and distinguish phonological units in different ways.

Within traditional feature systems, each of the natural classes described above receives a separate name, which obscures the systematic relation among the various classes. Moreover, even in feature geometry, when manner features are restricted to a single level there is no principled representation of the hierarchical relation among the natural classes. However, feature geometries sometimes incorporate pieces of the CD hierarchy, for example, in the assignment of [nasal] and [continuant] as dependents of two different nodes in the hierarchy (Soft Palate and Root: Sagey, 1986), or the assignment of [sonorant] as part of the Root node itself, but [continuant] as a dependent on the Root node (McCarthy, 1988). Note, however, that hierarchical relations among manner classes have to be stipulated in feature geometries, whereas such relations are inherent in the CD hierarchy. In addition, the percolation principles of tube geometry provide a mechanism for relating values of the different levels to each other, again something that would need to be stipulated in a hierarchy not based on tube geometry.

All the levels of the CD hierarchy appear to be useful for establishing natural classes, and for relating the CD natural classes to one another. In addition, various kinds of phonological patterns, such as phonological alternations, can be examined in light of this hierarchy. In particular, we can investigate whether regularities are best expressed as processes that treat CD as tied to a particular gesture (as an 'input' parameter) or as a consequence of gestural combination at the various 'output' levels of the CD hierarchy. For example, the cases discussed in § 2.2.1 (e.g., /k#k/ → /h#k/) can be best described as processes that delete entire gestures. CD is tied to the gesture and is deleted along with the articulator set and CL. This deletion automatically accounts (by percolation) for the CD changes at other levels of the hierarchy.

In other cases, however, there is much overdetermination—the phonological behavior can be described equally well from more than one perspective. For example, McCarthy (1988) discusses the common instances in which /s/ → /h/, and glottalized consonants /p' t' k'/ → /l/. Both of these examples can be straightforwardly analyzed as deletion of the oral gesture, as in the cases in § 2.2.1. But it is also true that, in both cases, the Vocal Tract output CD is unchanged by the gestural deletion. In the first case, it remains noisy, and in the second it remains an occlusion. Thus, the description of the phonological behavior could also focus on the (apparent) relative independence of the VT [CD] and the articulator set involved—the articulator set(s) changes, but CD does not. The equivalence of the two perspectives results from that fact that the percolated values of VT [CD] are the same for the two gestures alone and for their combination. Thus, deletion of one or the other will not change the VT [CD]. Examples of this kind, of which there are likely to be many, can be viewed from a dual perspective.

One example of process for which it seems (at first glance) that a dual perspective cannot be maintained involves assimilation. Steriade (in press) has argued that assimilation is problematic for the gestural approach, since sometimes only the place, and not the manner, features are assimilated. For example, in Kpelle nasals assimilate in place but not manner to a following stop or fricative, so that /N-t/ becomes a sequence (broadly) transcribed as [mv] (Sagey, 1986). As Steriade points out, this separation of the place and manner features appears to argue against a gestural analysis, in which the assimilation results from increased overlap between the oral gesture for the fricative (LIPS [crit den]) and the velum lowering gesture (VEL [wide]). Since the nasal does not become a nasal fricative, it would appear either that there is no increased overlap, or that the LIPS [crit] gesture changes its CD when it overlaps the velum lowering gesture. From the perspective of the CD hierarchy, the Supra CD of the nasal is the same before and after the assimilation (open), and therefore the Supra level (or VT level) is the significant one for CD, rather than the Gestural level. However, the percolation principles from tube geometry predict that the Supra CD will be [open] even if the nasal is overlapped by a fricative gesture, as derived in (10).
Articulatory Gestures as Phonological Units

There could also be a TT gesture in the derivation that is either hidden or deleted—the Supra CD would still be [open]. Thus, an increase in gestural overlap could produce both the place assimilation as well as the correct CD at the Supra level, without any change of the Gestural CD. (An articulatory study is needed to determine whether the Gestural CD does indeed change).

The examples presented so far are processes that are either best described with CD attached firmly to a given gesture as it undergoes change (e.g., deletion or sliding), or are at least equally well described that way. However, there are phenomena whose description requires a 'loosening' of the relation between CD and the gesture. One such situation, in which the Gestural CD is effectively separated from its articulator set, occurs in historical change (Browman & Goldstein, in press), in particular in the types of historical change that Ohala (1981) terms 'listener-based' sound changes. Such cases arise particularly when gestural overlap leads to ambiguity in the acoustic signal that the listener can parse into one of two gestural patterns. In such cases, Browman and Goldstein (in press) argue that there is a (historical) 'reassignment' of the constriction degree parameter between overlapping gestures. One such situation, in which the Gestural CD is effectively separated from its articulator set, occurs in historical change (Browman & Goldstein, in press), in particular in the types of historical change that Ohala (1981) terms 'listener-based' sound changes. Such cases arise particularly when gestural overlap leads to ambiguity in the acoustic signal that the listener can parse into one of two gestural patterns. In such cases, Browman and Goldstein (in press) argue that there is a (historical) 'reassignment' of the constriction degree parameter between overlapping gestures. This analysis was used to account for the \(/x/ \rightarrow /\theta/\) changes in English words like *cough*, based on an argument originally put forth by Pagliuca (1982). Briefly, the analysis proposed that the [crit] descriptor for the TB gesture for \(/x/\) was re-assigned to an overlapping LIPS gesture.

A related synchronic situation, involving two overlapping gestures in a complex segment, is discussed in Sagey (1986). Her analysis suggests that manner features must be represented on more than a single node in a feature hierarchy. Specifically, Sagey demonstrates that multiple oral gestures cohering in a complex segment may be restricted to a single distinctive constriction degree. She represents this single distinctive constriction degree at the highest level in the hierarchy, but still must represent which particular articulation bears the contrastive CD. Thus, CD is specified at two different levels. Sagey diagrams the relation between the two levels by a looping arrow drawn between the distinctive level and the 'major' articulator making the distinctive constriction. In the CD hierarchy, the Oral CD would be the lowest possible distinctive level for these double articulations. The gesture that carries the distinctive CD could be marked as [head], and would automatically agree in CD with the mother node, as in (11).

Moreover, in examples such as this, the percolation principles do not contribute to determining the CD of the distinctive node, except in a negative way to be discussed shortly. Sagey argues that the distinctive CD cannot be predicted from physical principles, since in Margi labio-coronals, the coronal articulation is major, and hence in /ps/ the less radical constriction is the distinctive constriction, rather than the more radical one. Thus, the relation between the Oral and Gestural levels in (11) must be a statement about a functional phonological unit, a gestural constellation, rather than a statement.
characterizing an instantaneous time slice in terms of tube geometry. That is, only one of the gestures in the constellation may bear a distinctive CD. Nevertheless, the importance of physical overlap relations can also be seen in this example. Maddieson and Ladefoged (1989) have shown that complex segments such as [gb] are not completely synchronous, apparently lending support to the distinction between phonetic ordering, on the one hand, and phonological unordering, on the other hand. However, we argue that the ordering of gestures within a complex segment is phonologically important in exactly the case of a phonological unit like Margi [flew], where the distinctive value of CD at higher levels is not predicted from the lower level CDs by the percolation principles. If two gestures overlap completely (i.e., are precisely coextensive), and there are no additional phonetic cues of the sort discussed in Maddieson & Ladefoged, then the percolation principles will determine the higher level constriction degree throughout the entire time-course of the phonological unit, and the distinctive CD will fail to be conveyed. For example, in the case of [flew], if the two gestures were precisely aligned, the (distinctive) frication would never appear at the VT level. Only if the gestures are slightly offset can the distinctive CD be communicated.

In general, the CD hierarchy affords a structure within which a typology of phonological processes can be developed, based on the CD level that seems most relevant. It is an interesting research challenge to develop this typology, and to ask how it is related to other ways of categorizing the processes. For example, are there systematic differences in relevant CD level that correlate with whether the process involves spreading (sliding) rules or deletion rules, or with whether the process is prelexical or postlexical?

4 SUMMARY

We have argued that dynamically-defined articulatory gestures are the appropriate units to serve as the atoms of phonological representation. Gestures are a natural unit, not only because they involve task-oriented movements of the articulators, but because they arguably emerge as prelinguistic discrete units of action in infants. The use of gestures, rather than constellations of gestures as in Root nodes, as basic units of description makes it possible to characterize a variety of language patterns in which gestural organization varies. Such patterns range from the misorderings of disordered speech through phonological rules involving gestural overlap and deletion to historical changes in which the overlap of gestures provides a crucial explanatory element.

Gestures can participate in language patterns involving overlap because they are spatiotemporal in nature and therefore have internal duration. In addition, gestures differ from current theories of feature geometry by including the constriction degree as an inherent part of the gesture. Since the gestural constrictions occur in the vocal tract, which can be characterized in terms of tube geometry, all the levels of the vocal tract will be constricted, leading to a constriction degree hierarchy. The values of the constriction degree at each higher level node in the hierarchy can be predicted on the basis of the percolation principles and tube geometry. In this way, the use of gestures as atoms can be reconciled with the use of constriction degree at various levels in the vocal tract (or feature geometry) hierarchy.

The phonological notation developed for the gestural approach might usefully be incorporated, in whole or in part, into other phonologies. Five components of the notation were discussed, all derived from the basic premise that gestures are the primitive phonological unit, organized into gestural scores. These components include (1) constriction degree as a subordinate of the articulator node and (2) stiffness (duration) as a subordinate of the articulator node. That is, both CD and duration are inherent to the gesture. The gestures are arranged in gestural scores using (3) articulatory tiers, with (4) the relevant geometry (articulatory, tube or feature) indicated to the left of the score and (5) structural information above the score, if desired. Association lines can also be used to indicate how the gestures are combined into phonological units. Thus, gestures can serve both as characterizations of articulatory movement data and as the atoms of phonological representation.

REFERENCES

Articulatory Gestures as Phonological Units

FOOTNOTES

* Phonology, 6, 201-151 (1989).

† Also, Department of Linguistics, Yale University.

1. A simple dynamical system consists of a mass attached to the end of a spring—a damped mass-spring model. If the mass is pulled, stretching the spring beyond its rest length (equilibrium position), and then released, the system will begin to oscillate. The resultant movement patterns of the mass will be a damped sinusoid described by the solution to the equation below. When such an equation is used to model the movements of coordinated sets of articulators, the object—motion variable—in the equation is considered to be the tract variable, for example, lip aperture (LA). Thus, the sinusoids trajectory would describe how lip aperture changes over time:

\[
m \ddot{x} + b \dot{x} + k(x - x_0) = 0
\]

where \(m \) = mass of the object, \(b \) = damping of the system, \(k \) = stiffness of the spring, \(x_0 \) = rest length of the spring (equilibrium position), \(x \) = instantaneous displacement of the object, \(\dot{x} \) = instantaneous velocity of the object, \(\ddot{x} \) = instantaneous acceleration of the object.

2. For ease of reference to the gesture, it is possible to use either a bundle of gestural descriptors (or a selected subset) or gestural symbols. We have been trying different approaches to the question of what gestural symbols should be; our present best estimate is that gestures should be treated like archiphenomes. Thus, our current proposal is to use the capitalized form of the voiced IPA symbol for oral gestures, capitalized and diacritized [H] for glottal gestures, and [±N] for [velars clo] and [velars open] gestures, respectively. In order to clearly distinguish gestural symbols from other phonetic symbols, we enclose them in curly brackets: { }. This approach should permit gestural descriptions to draw upon the full symbol resources of IPA, rather than attempting to develop an additional set of symbols. However, we welcome comments from others on this decision, particularly on the proposal to capitalize gestural symbols, a choice that minimizes confusion with phonemic transcriptions—but that leads to a conflict with uvular symbols in the current IPA system.