The Effects of Age on Tongue Motion and Speech Duration

Maureen Stone, Moshe Stern, Joy Hagan, Joyce Park, Daniel Traub

University of Maryland Dental School
Department of Neural and Pain Sciences
Motivation

- Models of aging predict, and studies of aging show, a slowing of motor behaviors in older subjects.
- In the oral cavity Hirai et al (1991) showed age related changes in non-speech tongue motor behavior using ultrasound.
 - Subjects touched their tongue tip alternately to the palate and floor at rates of 60, 92, or 120 times/minute.
 - 20 repetitions were recorded and 10 were measured for:
 - Timing of the upper and lower contacts
 - Duration of the up and down movements,
 - velocity of the up and down movements
 - Time lag between cue and contact

Motivation

- Results: For older subjects
 - Contact time was shorter –more so at faster rates
 - Velocities were lower
 - Rhythm was more variable
 - Time lag longer

- Consistent with a model of slowing

Neurological Models of Age Related Slowing

1. Generalized slowing model
 - All cognitive process slow down to a similar extent
 - Supported by meta-analyses of reaction time studies
 - RT of older adults is predicted (fairly linearly) from young adults irrespective of tasks or conditions

2. Domain-Specific Model of Slowing
 - All tasks in domain show similar slowing effects
 - E.g., verbal vs nonverbal effects

3. Process-Specific Model of Slowing
 - Slowing effects vary by cognitive process, not task or domain
 - E.g., memory vs understanding

Reaction Time Results

- Simultaneous matching tasks.
 - Age significantly reduced accuracy and reaction time
 - 60+ group were slower than 20-30s on majority of tasks.
 - Generalized Slowing

- Delayed matching tasks.
 - Accuracy decreased with age, but reaction time did not.
 - Not generalized slowing
 - 60+ group sacrificed accuracy for speed on all tasks irrespective of difficulty
 - Memory component effect explained by process-specific model

Speed/Accuracy Trade-Off

- Age related changes seen in timing and motor control of various behaviors are consistent with neurological changes, such as:
 - Internal noise
 - Decreased attention
 - Increased processing demands
 - Greater trade-off of speed and accuracy

- Muscle tissue alterations also could potentially affect speech by reducing strength.
Expectations

Older speakers may reduce speed and/or accuracy.

Hypothesis:

- H1: Older people will speak more slowly, consistent with a general model of muscular and neurological aging.
- H2: Older speakers will exhibit more variability than younger speakers at non-constriction regions of the vocal tract, which has a low impact on the acoustic signal, but not at phonemic constrictions.
METHODOLOGY
Subjects

- 10 younger female patients aged 20 to 30.
- 10 older female patients aged 64 to 82.
- Women were used instead of men because the ultrasound images were better with women.

Inclusion Criteria

- General Good Health, Normal Oral Motor Exam
- Normal speech
- Normal hearing, normal SRT
- MD/PA accent, no strong dialect
- College education
Speech Tasks

Five (5) repetitions of /əCVp/.
- 3 Consonants: /s/, /ʃ/ /r/.
- 3 Vowels: /i/, /ɑ/, /u/.

- 20 subjects x 6 CV’s x 5 reps = 600 data sets

- Two subjects had only 3 repetitions of each. Occasionally a subject had only 4 repetitions. One subject had data only for /i/ condition.
Variables and analysis

- Independent variables
 - Age (1=younger, 2=older)
 - Phoneme (a, i, u, r, s, sh)
 - Context (a, i, u, r, s, sh)

- Dependent variables
 - Displacement at Constriction
 - Displacement at Non-constriction
 - SD of each
 - Velocity at Constriction
 - Duration: Phoneme, CV, Total

- SPSS, GLM, 1 way or 3 way ANOVAs
Instrumentation

- Ultrasound Machine: Acoustic Imaging, Phoenix AZ, Model AI5200S.
- 2-4 MHz multifrequency convex-curvilinear array transducer.
- 28 fps, 90 degree sector.
- HATS to stabilize head and transducer.
- Microphone (Audiotek – unidirectional, short range)
- Videotape of subject’s lower face.
Recording Procedures

- Subject seated in HATS with microphone placed 3” from mouth and transducer under chin midsagitally.

- Each task repeated 5 times at own pace; task order was randomized.

- Ultrasound images were oriented so that shadows of the hyoid and jaw bones were equidistant from the edges of scan.

- Audio and video were recorded on videotape and digitized with Final Cut Pro onto Mac.
Ultrasound Analysis

- **EdgeTrak**
 - Extract and track the tongue contour (red dots)
 - Store it as a series of xy coordinate points.
CAVITE (Contour Analysis and Visualization Technique)

Palate was drawn in proper position

Vertex was positioned several mm below and halfway between minimum and maximum x

Radii were drawn at constriction for each phoneme
Calculating Displacement and Velocity

- **Constriction Displacement (Velocity):** The displacement occurring at the constriction radius at the second time-frame after the acoustic onset of the phoneme.

- Once this was determined for a phoneme, the following measures were made at the same time.
 - **Non-Constriction Displacement:** The displacement occurring during the constriction displacement of the adjacent sound.
 - **Constriction SD**
 - **Non-Constriction SD**
Acoustic Analysis

PRAAT

- Phoneme duration of /ə/, C, V.
 - /ə/ was occasionally preceded by a glottal stop and silent period; they were not measured.
 - /s/ and /ʃ/ duration was measured at the onset/offset of noise at 4KHz.
 - /r/ duration could not be measured: intervocalic glide.

- Also measured
 - CV duration
 - total duration (from /ə/ onset to /p/ closure)
RESULTS
Aging Effects on Duration

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>f</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV dur</td>
<td>Age</td>
<td>4.404</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>4.82</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>4.915</td>
<td>0.003</td>
</tr>
<tr>
<td>Total Dur</td>
<td>Age</td>
<td>11.363</td>
<td>0.001</td>
</tr>
<tr>
<td>Total Dur SD</td>
<td>Age</td>
<td>7.071</td>
<td>0.009</td>
</tr>
<tr>
<td>Schwa/TotDur</td>
<td>Age</td>
<td>1.908</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>.327</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>.790</td>
<td>NS</td>
</tr>
<tr>
<td>Phone/TotDur</td>
<td>Age</td>
<td>5.186</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>34.155</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>20.904</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Results:
Longer durations for older subjects in all measures except schwa.
Acoustic Data Support Models of Slowing

- Duration data were consistent with a General Slowing Model of aging. Older subjects were slower on all tasks except /schwa/.

- Also consistent with a Domain-specific model because we focused on a single domain, namely speech-like tasks.

- Next we turned to aging effects on articulation accuracy, we studied tongue displacement and SD at constriction and non-constriction regions of the vocal tract.
<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>f</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constriction Displacement</td>
<td>Age</td>
<td>1.487</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>3.724</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>0.305</td>
<td>NS</td>
</tr>
<tr>
<td>Non-Constriction Displacement</td>
<td>Age</td>
<td>0.307</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>2.335</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>4.129</td>
<td>0.003</td>
</tr>
<tr>
<td>Constriction Velocity</td>
<td>Age</td>
<td>0.003</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>7.329</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>1.352</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme x Context</td>
<td>2.696</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Age was NS for all
Age Effects on Variability

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>f</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constriction SD</td>
<td>Age</td>
<td>0.665</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>1.756</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>1.579</td>
<td>NS</td>
</tr>
<tr>
<td>Non-Constriction SD</td>
<td>Age</td>
<td>0.021</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>7.988</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>1.548</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme X</td>
<td>3.013</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>1.548</td>
<td>NS</td>
</tr>
</tbody>
</table>

Age was NS
Do the Models of Aging fit this data?

- Acoustic data supported age related slowing.
- Tongue data did not.
 - Displacement showed no age related effect at constriction or non-constriction radius.
 - SD also showed no age related effect at constriction or non-constriction radius.
 - Velocity at constriction – no age effect.
- However, these two data sets suggest a difference between the speed/accuracy tradeoff in older vs. younger subjects.
 - Lower speed, and unchanged accuracy in older subjects.
Effects of Context on Displacement

- Changes at the constriction are more acoustically salient than at the non-constriction site.
- Looked at Non-constriction vs Constriction Displacement and SD.
- Age differences may be seen as an age x context interaction, with a greater context effect in older subjects at the non-constriction site.
Context Effects on Displacement

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>f</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constriction Displacement</td>
<td>Age</td>
<td>1.487</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>3.724</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>0.305</td>
<td>NS</td>
</tr>
<tr>
<td>Non-Constriction Displacement</td>
<td>Age</td>
<td>0.307</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>2.335</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>4.129</td>
<td>0.003</td>
</tr>
<tr>
<td>Constriction SD</td>
<td>Age</td>
<td>0.665</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Phoneme</td>
<td>1.756</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>1.579</td>
<td>NS</td>
</tr>
<tr>
<td>Non-Constriction SD</td>
<td>Age</td>
<td>0.021</td>
<td>NS</td>
</tr>
<tr>
<td>More coarticulation</td>
<td>Phoneme</td>
<td>7.988</td>
<td>0.000</td>
</tr>
<tr>
<td>Not more variability</td>
<td>Context</td>
<td>1.548</td>
<td>NS</td>
</tr>
</tbody>
</table>
This study found.

- Tongue Displacement was a very stable parameter.
- Durations were longer with age.
- These are consistent with trade-offs of speed to maintain accuracy, and a General Slowing Model.
- These subjects were all healthy, which may have reduced aging effects.
Other theories of Aging

(1) Reduced Processing Resources

- Aging leads to a reduction in the quantity of processing resources (attention, memory, speed)
 - Space: memory
 - Energy: attentional capacity
 - Time: tradeoffs between rate and decay of processing

- Processing resources are not restricted by tasks or domains but allocated across a broad range of cognitive processes.

- To enhance cognitive tasks greater amounts of these resources need to be allocated to them.

Other theories of Aging

(2) Selective Optimization with Compensation.

- Manage the dynamics between gains and losses of aging.
 - Selection: Restrict ones life to fewer domains
 - Optimization enrich and augment reserves maximize chosen life courses
 - Compensation: when specific capacities are lost.
- Artur Rubinstein: Reduced his repertoire, practiced them more often, slowed his speed prior to fast movements to heighten the impression of speed.

These models predict

- Reduced function in aging is overcome by
 - (1) focusing resources or
 - (2) restricting domains of activity.

- Behavior is slowed with age but task is not compromised because slowing
 - (1) allows selective resource allocation or
 - (2) is a means of compensation

Our data are more consistent with the first model.

- Older speakers slowed speech and maintained tongue displacement and precision.
Because speech is overlearned, it is very well practiced. An important domain that doesn’t get neglected – at least not in these subjects.

Slowing down speed allows processing resources to be better allocated to the tasks.

These subjects were normal-to-optimal aging candidates – they may not need much compensation, such as non-constriction effects.

Future study needs to include less successful agers.
The authors would like to thank Keith Mays and Katie Dietrich-Burns for comments.
THE END