| Abstract | Synchronization has been shown to be a valuable concept in the field of nonlinear dynamics and dynamical systems in general. Deviation from perfect synchronization results from an interplay of deterministic coupling forces and stochastic fluctuating forces. When the exact details of these two sources of variance are unknown, it becomes useful to estimate them directly from data. To this end, we develop a data analysis method for estimating parameters associated with these deterministic and stochastic components. The method relies on separating their respective contributions to synchronization error. We focus on the case where a slave system synchronizes with the future of a master system, so-called anticipating synchronization. |