ACOUSTIC CUES FOR A FRICATIVE-AFFRICATE CONTRAST IN WORD-FINAL POSITION*

Michael F. Dorman,+ Lawrence J. Raphael+++ and David Isenberg

Abstract. The experiments reported here were designed to identify some of the acoustic cues to the fricative-affricate contrast in word-final position (as in dish vs. ditch). Listening tests prepared from computer-edited natural speech tokens of dish and ditch reveal that each of the following variables can influence the identification of fricatives and affricates: the temporal and/or spectral characteristics of the vocalic interval, duration of a silent interval, presence or absence of a release burst, rise-time of the fricative noise and the duration of the fricative noise. These results indicate that aspects of qualitatively different acoustic information are integrated over a relatively long period of time when listeners identify fricatives and affricates in word-final position. This outcome suggests that neither a single acoustic property detector nor a single natural category can satisfactorily account for the perception of fricatives and affricates.

INTRODUCTION

In the several experiments reported here we investigate the acoustic variables that cue the contrast between fricative and affricate in word-final position. Our interest in these variables stems from several sources. One is that our knowledge of the relevant acoustic variables comes from very early unpublished experiments conducted at Haskins Laboratories using the Pattern Playback as a speech synthesizer. Since the Pattern Playback did not have a proper noise source for fricatives,¹ these early studies bear replication and extension. Another source is our interest in the temporal interval over which the cues for a contrast may be distributed (Dorman, Raphael & Liberman, in press; Repp, Liberman, Eccardt & Pesetsky, 1978). Investigation of the fricative-affricate contrast in syllable-final position allows us to determine the perceptual salience of acoustic variables that occur before vocal tract closure for the affricate, the perceptual salience of the closure interval itself and the perceptual salience of aspects of the fricative noise that follows the closure interval.

*Throughout this paper, all occurrences of [r] will appear as [I]. Therefore, e.g., read /DI/ as /dr/.
+Also University of Arizona.
++Also Herbert H. Lehman College of the City University of New York.

Acknowledgment: Research supported by Grant HD-01994 from the National Institute of Child Health and Human Development and by NIH Post-doctoral Fellowship NS-05493 awarded to D. Isenberg.

[HASKINS LABORATORIES: Status Report on Speech Research SR-57 (1979)]

217
Inspection of the natural speech utterances *dish* and *ditch* in Figure 1 suggests three acoustic properties of the fricative noise that vary between the utterances and thus may serve as acoustic cues (Bailey & Summerfield, 1978). These are the release burst, the rise-time of the fricative noise and the duration of the fricative noise. Indeed, Gerstman (1957) has shown that, in absolute initial position, rapid rise-times and brief durations of fricative noise lead to the perception of affricates while slow rise-times and longer fricative noise durations lead to the perception of fricatives. The role of the release burst that can be seen in the spectrogram of *ditch* preceding the fricative noise has not been previously investigated. In Figure 1 it is also evident that *ditch* has a silent closure interval before the onset of the fricative noise that is a consequence of stop articulation. There is no corresponding closure interval in *dish*. Both Kuipers (1955) and Truby (1955) have shown that long closure intervals lead to the perception of affricates while short intervals lead to the perception of fricatives. However, since both of these studies used the Pattern Playback as a synthesizer, they deserve replication. Finally, in Figure 1 we see that the vocalic portions of the two utterances differ in duration (Isenberg, 1978) as well as in the degree of formant movement preceding the closure. The perceptual salience of these variables has not been previously investigated.

The experiments that follow were designed to assess the effects of each of the acoustic variables described above on the perception of the fricative-affricate contrast. In summary, these variables are: (a) the vocalic portion of the utterance, (b) the duration of the closure interval, (c) the presence of a release burst, (d) the rise-time of the fricative noise amplitude envelope and (e) the duration of the fricative noise.

There is more, however, to our experiments than an investigation of the acoustic cues for a particular phonetic contrast. Our data bear on theories of speech perception that suggest that natural categories (Cutting & Rosner, 1974) or detectors of simple acoustic properties mediate the recognition of phonetic identity. If the outcome of our experiments is that each of the acoustic variables described above can cue the fricative-affricate contrast, then it will be clear that a single natural category or acoustic property detector cannot account for the perception of that contrast.

EXPERIMENT 1

The purpose of our first experiment was to determine whether two aspects of fricative noise onset—the release burst and the rise-time of the fricative noise—have perceptual salience in the contrast between fricative and affricate in word-final position.

Method

To assess the effect of the release burst, we digitized and stored in computer memory a male speaker's recording of the utterance, "Put it in the ditch." To create the stimuli for one stimulus condition, we used the *ditch* stimulus as recorded (with release burst) and inserted intervals of silence between the vocalic portion and the burst. The silent intervals ranged in duration from 0 to 100 msec in 10 msec steps. To create the stimuli for another stimulus condition, we removed the burst from the waveform of the
Figure 1: Spectrograms of a male speaker's productions of dish (left) and ditch (right) showing contrastive acoustic features that may be relevant in perception of the fricative-affricate distinction (see text).
ditch stimulus and then inserted the same intervals of silence between vocalic portion and fricative noise onset as were used in the first condition. Four tokens of each stimulus in each condition were generated and the resulting stimuli randomized (with a three-second interstimulus interval) into a single test sequence.

The subjects were 16 undergraduates at Arizona State University. They were run in groups in a large sound-attenuated room. The stimulus sentences were presented via tape recorder and headphones at a comfortable listening level. Subjects were instructed to identify the last word in each stimulus sentence as dish or ditch.

To assess the effects of fricative noise rise-time, a male speaker's recording of "Put it in the dish," was first digitized and stored in computer memory. For one stimulus condition we used the dish stimulus as recorded (with a 35-msec rise-time) and then inserted intervals of silence between the vocalic portion and the fricative noise onset (rise-time was defined as the interval between the onset of energy and the point of maximum signal amplitude). The silent intervals ranged from 20 to 150 msec in 10-msec steps. For a second stimulus condition we removed the first 30 msec of the /ʃ/ fricative noise leaving an effective rise-time of 0 msec. To compensate for the temporal reduction in frication, we embedded an additional 30 msec of full amplitude fricative noise in the center of the /ʃ/ fricative noise. Four tokens of each stimulus in each of the two stimulus conditions were then generated, placed within the original sentence frame and randomized with a three-second inter-sentence interval into a single test sequence.

The subjects were 10 undergraduates at Arizona State University. For all conditions the stimuli were reproduced at a comfortable listening level in a large sound-attenuated room via tape recorder and loudspeaker. Subjects were instructed to identify the last word in each stimulus sentence as dish or ditch.

Results

The effect of the release burst on the identification of ditch is shown in Figure 2. For the stimuli with a release burst, the phoneme boundary between /ʃ/ and /tʃ/ (the point of 50 percent /ʃ/ and /tʃ/ responses) falls at 18 msec of silence. For the stimuli without a burst, the boundary falls at 28 msec. The difference in boundary is significant by a Wilcoxon sign-ranks test (T = 3, p < .05). We conclude that the burst has perceptual salience in natural speech for the fricative-affricate contrast in word-final position.

The effect of fricative noise rise-time on the identification of ditch is shown in Figure 3. For the stimuli with a 0-msec rise-time, the phoneme boundary falls at 37 msec of silence, while for the stimuli with a 35-msec rise-time, the boundary falls at 57 msec. The difference in boundary is significant (T = 2, p < .05). We conclude from this outcome that the rise-time of the fricative noise is also a cue to the fricative-affricate contrast in natural speech. Thus, it is the case for natural speech, as it is for synthetic speech, that the onset characteristics of the fricative noise play a significant role in the perception of the fricative-affricate contrast.
Figure 2: Effect of closure duration and presence or absence of a release burst on listeners' identifications of stimuli as dish or ditch.
Figure 3: Effect of closure duration and fricative noise rise-time on listeners' identifications of stimuli as dish or ditch.
The duration of the closure interval also exerted a powerful influence on the identification of ditch and dish. Indeed, regardless of whether the source utterance was ditch or dish, at short closure intervals the stimuli were generally heard as dish while at long intervals the stimuli were heard as ditch. Thus, at least two cues, the duration of the closure interval and the fricative noise onset timing, operate to specify the contrast between fricative and affricate in word-final position.

EXPERIMENT 2

Our first experiment demonstrated that the onset characteristics of the fricative noise (i.e., the rise-time and presence or absence of a burst) and the duration of the preceding silent interval were cues to the fricative-affricate contrast. In Experiment 2 we assessed whether the duration of fricative noise is also a perceptual cue to the contrast in word-final position.

Method

The utterance, "Put it in the dish," was produced by a male speaker and then stored in digital form in computer memory. To assess the effect of fricative noise duration we created dish stimuli with fricative noise durations of 320, 240 and 160 msec. The stimulus with the longest fricative noise duration was the stimulus originally recorded. To create the stimulus with 240 msec of fricative noise, 80 msec of fricative noise was removed from the center of the 320-msec fricative noise. The onset and offset of the fricative noise were then recomposed. A similar procedure with the 240-msec stimulus created the 160-msec stimulus. (We should note that since the fricative noise was aperiodic, the removal and recomposition of the fricative noise did not produce audible transients.) For each stimulus condition, intervals of silence ranging from 0 to 100 msec in 10-msec steps were inserted between the vocalic portion and fricative noise portion of the signal. Four tokens of each stimulus in each stimulus condition were generated and then randomized with a three-second interstimulus interval into a single test sequence.

Two groups of 12 undergraduate subjects at Herbert H. Lehman College listened to the stimuli in a large sound-attenuated room. The stimuli were reproduced at a comfortable listening level via tape recorder and loudspeaker. Subjects were asked to identify the last word in each sentence as dish or ditch.

Results

The effect of the fricative noise duration on the identification of ditch is shown in Figure 4. The phoneme boundary for the 320-msec condition fell at 68 msec of silence, for the 240-msec condition it fell at 61 msec of silence and for the 160-msec condition it fell at 54 msec of silence. The boundaries for the 320-msec and 240-msec conditions were significantly different (T = 0, p < .05), as were the boundaries for the 240-msec and 160-msec conditions (T = 5, p < .05). We conclude that the duration of fricative noise is a cue to the fricative-affricate contrast in word-final position.
Figure 4: Effect of closure duration and fricative noise duration on listeners' identifications of stimuli as dish or ditch.
In the outcome of Experiment 1 we saw that the duration of the silent interval before the fricative noise and the onset characteristics of the fricative noise contributed to the perception of the fricative-affricate contrast. In the outcome of the present experiment we see that the duration of the fricative noise, as well as its onset, also contributes to that contrast. Thus, we see once again that any single characteristic of the fricative noise is not sufficient to account for perception of a word-final fricative-affricate contrast. Rather, it seems that the perceptual system integrates several types of acoustic information over a relatively long period of time in identification of this contrast (see also Repp et al., 1978).

EXPERIMENT 3

It is not unexpected that the duration of the closure interval, the release burst, the rise-time of the fricative noise and its duration all affect the perception of fricative-affricate contrasts in word-final position. All vary as a function of the gesture that differentiates fricative from affricate. Extending this reasoning, one might expect that each of the temporally and spectrally distributed acoustic consequences of that gesture may have perceptual salience. If so, then we should find that properties of the vocalic portions of dish and ditch also contribute to the perceptual contrast since they differ as a function of whether a fricative or affricate is produced. Indeed, they differ in at least two ways—we know that the vocalic section preceding the affricate is shorter than that preceding the fricative (Isenberg, 1978), and also we see in Figure 1 that the vocalic section produced in ditch contains spectral transitions appropriate for complete vocal tract closure that are absent in the vocalic section of dish. Experiment 3 was designed to determine whether the vocalic sections of dish and ditch affect the identification of word-final fricatives and affricates.

Method

A male speaker's recordings of, "Put it in the dish," and "Put it in the ditch," were digitized and stored in computer memory. To assess the effect of the vocalic portions of dish and ditch on the perception of the fricative noise, we isolated the vocalic and fricative noise portions of the signals. We then recomposed these portions of the signals into four 10-step stimulus series. Each series was defined by the duration of the silent interval, which varied from 0 to 90 msec in 10-msec steps. In order to assess the relative contribution of differences in the vocalic and fricative noise portions of the signal, two of the continua were "crossed." These two continua contained either the vocalic section from dish and the fricative noise from ditch (/dI/+f/) or the vocalic section from ditch and the fricative noise from dish (/dI/+f/). The other two continua were "uncrossed" controls. One was constructed from the vocalic and fricative noise portions of dish (/dI/+f/). The other was constructed from the corresponding portions of ditch (/dI/+f/). All four continua were then randomized into a single test sequence and recorded with a three second inter-sentence interval.

The subjects, 10 volunteers who were personnel at Haskins Laboratories, listened to the stimuli in a sound-attenuated room. The signals were reproduced at a comfortable listening level via tape recorder and headphones.
Figure 5: Effect of closure duration and the interaction of vocalic and fricative noise portions of dish and/or ditch on listeners' identifications of stimuli as dish or ditch.
Subjects were again asked to identify the final word in each sentence as *dish* or *ditch*.

Results and Discussion

The identification functions for the four continua are shown in Figure 5. We can see that the phoneme boundary for the /dɪt/ + /tʃ/ stimuli falls at the shortest duration of closure interval (11.6 msec). These stimuli also yield the greatest proportion of *ditch* responses (81.9%). We also see that the phoneme boundary for the /dɪ/ + /ʃ/ stimuli falls at the longest duration of closure interval (58.9 msec). These stimuli yield the smallest proportion of *ditch* responses (33.1%). The identification functions for the two "crossed" continua fall between these values, indicating that both the vocalic section and the fricative noise influence the perceptual contrast. The phoneme boundary for the /dɪt/ + /ʃ/ continuum (38.6 msec) is not greatly different from that for the /dɪ/ + /tʃ/ continuum (29.3 msec), nor are the proportions of responses from the two continua (54.1% for /dɪt/ + /ʃ/; 65.0% for /dɪ/ + /tʃ/). In fact, it is clear that the vocalic section has almost as great an effect in specifying this fricative-affricate contrast as does the fricative noise itself.

An analysis of variance was performed on the crossovers computed for each subject in which vocalic section and fricative noise were within-subjects factors. A significant effect was obtained for both the fricative noise [$F(1,9) = 21.96$, $p < .01$] and for the vocalic portion [$F(1,9) = 38.22$, $p < .01$], indicating that both sections were effective in specifying this fricative-affricate contrast. There was no interaction between these factors ($F < 1.0$). A similar pattern was obtained in an additional analysis of variance performed upon the proportion of *ditch* responses.

These data suggest that properties of the vocalic region are effective cues for the perception of an affricate. One might have predicted that the acoustic properties of the fricative noise would have contained the major cues. However, a comparison of the identification functions for /dɪt/ + /ʃ/ and /dɪ/ + /tʃ/ reveals that listeners make about as many affricate responses in the two conditions. Thus, the vocalic portion of these utterances seems to be about as effective as the fricative noise portion as a cue to the fricative-affricate contrast.

We should point out that a fricative was generally reported even when both the vocalic and fricative noise portions of the signals were appropriate for an affricate, if the silent interval was very brief (less than 20 msec). The converse was also the case—when the closure was very long, an affricate was generally reported. (The failure of the /dɪ+/ʃ/ function to reach 100% was due to two subjects who were unable to hear the affricate with these stimuli even at very long closure intervals.) This outcome suggests that silence is a very powerful cue for the perception of an affricate in syllable-final position.

We can suggest three possible accounts for this outcome. One possibility is that when the physical gap in the signal is less than 20 msec, the auditory system does not resolve the gap. On this view, the signal arriving at central
processing mechanisms would be without an important cue for stop manner. Therefore, no affricate would be reported. This seems unlikely since there is a systematic increase in the percentage of /tʃ/ responses as silent interval is increased from 10 to 20 msec. Another possibility is that the vocalic portion of the utterance (forward) masks the onset of the fricative noise. This could result in the perception of a more gradual (or fricative-like) fricative noise onset. This explanation, however, seems weak on several accounts. The most important is that we would expect little or no forward masking between signals with such different frequency spectra and source characteristics. Finally, a third possibility is that a very brief silent interval is inappropriate for the production of a stop consonant and is, therefore, not an appropriate cue for the perception of stop manner. This, we suggest, is the most likely account.

GENERAL DISCUSSION

In this series of experiments with natural speech we have found the following acoustic variables to have perceptual salience for the fricative-affricate contrast in syllable-final position: the vocalic portion of the utterance, the presence and duration of the silent closure interval, the release burst, the rise-time of the fricative noise and the duration of the fricative noise. We may account for the perceptual salience of this constellation of acoustic variables by reference to articulation: Each variable is one of the distributed acoustic consequences of the gesture that differentiates fricative from affricate. In this context we should note Bailey and Summerfield’s (1978) suggestion that "...it appears possible to demonstrate that some 'cue-value' attends every acoustic detail that distinguishes two different phonetic events" (see also Lisker, 1977). We see in the present results a confirmation of this suggestion.

The importance of this outcome for theories of speech perception is that those theories must not only specify how the various elements of the acoustic signal are detected, but also what events bear on the same phonetic percept. This latter requirement entails looking across some time-varying segment of the speech signal. We wonder then how the recognition routines "know" what the relevant acoustic hallmarks for a given phoneme are, and how they are spread over time in the speech signal. It seems reasonable to suggest that a system that appreciates the several acoustic consequences of articulatory gestures would be most likely to know what to look for and over what period of the signal to look. This is simply to say that we expect in speech perception a link with speech production (see Bailey & Summerfield, 1978, for an excellent discussion of this issue).

Finally, we should note that the kinds of experiments described here—that is, those that demonstrate trading relationships among the several cues to the fricative-affricate contrast—may well prove probative in investigations of the phylogeny of speech perception. For example, we would not expect nonhuman primates to appreciate the diverse acoustic consequences of the production of fricative and affricate and, thus, we would not expect them to show the trading relations in perception found in the experiments reported here (see also Liberman & Pisoni, 1977).
REFERENCES

FOOTNOTES

1The pattern playback did not have a separate noise source. Fricatives were simulated by random selection of harmonic tone bursts within the bandwidth of the desired fricative noise (F. S. Cooper, personal communication).

2The rise-time of the original fricative noise was 35 msec. When the initial 30 msec of the noise was removed, the rise-time of the fricative noise that remained was essentially instantaneous, although the overall amplitude continued to increase for another 5 msec. Therefore we refer to our stimuli as having rise-times of 35 msec and 0 msec, respectively, even though we removed only 30 msec from the onset of the original fricative noise.