TOWARDS A THEORETICAL REASSESSMENT OF THE ROLE OF PROPRIOCEPTION IN THE PERCEPTION AND CONTROL OF HUMAN MOVEMENT*

J. A. Scott Kelso,† Kenneth G. Holt,† and Adrian E. Flatt++

Abstract. The theoretical role of proprioception in the perception and control of human movement is elusive because of the obvious inability to manipulate the various receptive systems experimentally. Individuals who have had the metacarpophalangeal joint and joint capsule removed and replaced with silastic inserts afford a unique opportunity to evaluate a principal source of proprioception, namely, slowly adapting joint afferents. In a set of experiments we show that such individuals show no deficits in finger localization following joint replacement. We take this and other complementary findings as a basis for proposing a dynamic rather than kinematic account of movement production. In addition, we provide a reconceptualization of the function of proprioceptive information in the central nervous system. Our arguments focus on proprioceptive inputs as tuning or modulating interneuronal pools rather than providing dimension-specific information to the brain as is commonly assumed.

An important limitation for those of us who seek to understand the control of human movement is that we are, by necessity, confined to observations about motor output upon which to infer the nature of the underlying processes involved. It is always difficult to discern which aspects of the motor output represent central control and which components reflect peripheral contributions. A major tack on approximating the peripheral informational support for human movement is to use techniques designed to interrupt or disrupt afferent function. Unfortunately, procedures that have been adopted thus far that attempt to interfere with the flow of kinesthetic information to the central nervous system via peripheral nerve blocks are rife with problems (Kelso, Stelmach, & Wanamaker, 1974).

*A preliminary version of this paper was presented at the Psychonomic Society Meetings, San Antonio, Texas, November 1978.
†Also University of Connecticut, Storrs.
++Department of Surgery, Norwalk Hospital, Norwalk, Connecticut.
Acknowledgment: This research was supported by Grants AM-25814 and NS13617 from the National Institutes of Health. We would like to thank Franklin S. Cooper and Michael T. Turvey for their helpful remarks on an earlier version.

[HASKINS LABORATORIES: Status Report on Speech Research SR-58 (1979)]
What is required is a preparation that selectively eliminates an important source of kinesthetic input without significantly impairing peripheral motor structures. Surgical operations carried out in humans that involve the replacement of joints provide a potential means for deriving important inferences on the role of kinesthesia in movement perception and control. Common to such procedures is the fact that the joint capsule—which purportedly accommodates receptors for position and movement (Skoglund, 1956)—is completely removed and the joint surfaces replaced. The patient therefore provides a unique opportunity to examine motor performance in the absence of the capsular component of peripheral receptor mechanisms. This is of particular significance, for recent theoretical papers and many critical reviews (e.g., Mountcastle, 1968; Roland, 1978) refer invariably to joint receptors as detectors of joint angle, and even as crucial to motor timing (Adams, 1977). Neither the current physiological data on joint receptors nor the behavioral data that we shall present support such a proposition. In contrast, our findings indicate that joint receptors are not necessary for detecting limb position. Moreover, they are extremely unlikely candidates for primary status in the temporal control of movement. We take advantage of our findings to elaborate upon a new style of control—initially promoted by Soviet theorists and developed by Turvey and others (Bernstein, 1967; Fitch & Turvey, 1977; Greene, 1972; Turvey, 1977)—that fits our general perspective on the nature of coordinated movement (Kelso, Southard, & Goodman, 1979a, 1979b).

The work of Skoglund (1956) and Boyd (1953) is typically regarded as a demonstration that joint afferent discharge is angular specific. Thus single neurons from slowly adapting receptors in the capsule of the cat knee-joint were shown to fire maximally at particular joint angles and with a sensitive range of 15 to 30 degrees. Unfortunately, recent and expansive data fail to confirm the early findings that joint afferents discharge at intermediate angles although supporting the view that much more activity is seen at the very extremes of flexion and extension (Burgess & Clark, 1969; Grigg & Greenspan, 1977; Lynn, 1975). In fact, when the popliteus muscle, which is located posterior to the knee-joint, is carefully removed, the midrange response is eliminated (Clark, 1975). Furthermore, the small number of midrange fibers found are strongly sensitive to succinylcholine chloride, a drug that is selectively responsive to muscle receptors. In contrast, no such sensitivity is observed in joint receptors that fire at the end of the movement range (Clark & Burgess, 1975). Obviously it would be useful to corroborate these new neurophysiological data with information from humans who have lost joint capsular afferents. In fact, some work has already been done in this regard. Grigg, Finerman, and Riley (1973), for example, performed a number of psychophysical tests on patients who had undergone total hip replacement. Their results revealed that loss of position sense was restricted, but only slightly so, to passive movements. Active movements showed no such deficit. It seems possible, however, that this result may be confounded with the fact that the hip joint is intrinsically involved in locomotory activities which, if animal evidence is a guide, do not require ongoing kinesthetic information (Grillner, 1975). Thus we might expect to see considerable differences in kinesthetic sensitivity between hip and finger joints, for example. Indeed, a simple comprehensive statement about the general properties of joint afferents across different joints has proved somewhat elusive. Although observations of knee and elbow joints converge for cats and primates in failing to show midrange responses, evidence from
costoverterbral (Godwin-Austin, 1969) and temporomandibular joints (Thilander, 1961) indicates the presence of full range receptors.

In the present experiments we examined the accuracy of movement reproduction of the index finger following complete surgical removal of the metacarpophalangeal (MP) joints in the hands of patients suffering from rheumatoid arthritis. In all cases the inserted "prosthesis" was one developed by Swanson (1972) and made of silastic rubber. In essence the device is not so much an articulated prosthesis as an implant designed to hold apart the two bone surfaces of the metacarpal and the proximal phalanx. Most patients had all four MP joints replaced, and all patients had the MP joint of either the right or left index finger removed. The movements allowed by the positioning device were flexion and extension of the index finger about the MP joint. The distal end of the finger was fitted with a plastic collar that slipped into an open-ended cylindrical support. The support revolved around the MP joint and prevented movement of the distal joints of the finger. Attached to the end of the support was a pointer that moved over a protractor graduated in degrees. The device was also equipped with padded adjustable clamps with which to secure the patient's wrist, hand and remaining fingers and thumb during the movement. Only the preferred hand was placed in the device while the other rested on the patient's lap. Vision of the hand was obscured by an aluminum screen. Procedures closely followed previous work (Kelso, 1977). In a preliminary study patients (n=5) and normal subjects (n=12) performed 12 preselected and 12 constrained movements into each of three movement sectors defined initially by the experimenter. Thus, for preselected movements, instructions were to "select" a short, medium, or long movement of the finger and then, following a 2-sec interval, to "move" to the desired position. In this case, therefore, subjects were free to choose their own desired movements with the only restriction that they disperse their selections within a given sector as much as possible. For constrained movements the commands were "ready" followed by "move" and the patient moved until he or she located a mechanical stop defining the movement. Thus subjects made constrained, exploratory movements since no prior selection was possible. Patients in both conditions reproduced the criterion movement with the stop removed following their passive return to the starting position, which remained constant throughout.

A main feature of our data was that there were minimal differences between normal subjects and joint replacement patients. On preselected movements the mean reproduction error of normal subjects was 2.98 degrees (1 degrees = 2 mm measured at the tip of the index finger) compared to 3.13 degrees for the joint replacement group. Although errors on constrained movements were slightly higher overall, the remarkable result was that the removal of joint afferent information had no effect whatsoever (means = 4.44 degrees and 3.97 degrees for normals and joint replacement patients, respectively). This finding was in sharp contrast to a situation where normal subjects (n=12) performed under conditions where joint and cutaneous information were eliminated via the application of a child's sphygmomanometer (blood pressure cuff) at the wrist. This technique has the advantage of preserving muscle function in finger flexors and extensors since these muscles lie high in the forearm above the cuff (Goodwin, McCloskey, & Matthews, 1972; Kelso, 1977; Merton, 1964). Although preselected performance was hardly affected (mean = 3.34 degrees), there were considerable deleterious effects under
constrained, exploratory conditions (mean = 13.34 degrees). Indeed, phenomenological reports revealed that wrist cuff subjects could not perceive the locus of the mechanical stop when performing constrained movements. This was not the case for joint replacement patients.

While these data are highly suggestive that joint afferent information is not crucial for the perception and control of movement, we must emphasize that patients in our initial experiment varied in the extent of the post-operative recovery period from six weeks in one case to over a year in another. An examination of the individual data, however, did not reveal any sizable systematic differences among patients as a function of the post-operative period. Nevertheless, it would clearly be more satisfactory to collect data from patients as soon after the operation as possible.

The follow-up experiments were on 13 patients who were examined during a period from two days to four weeks following total MP joint arthroplasty. On some occasions pre-tests were given using the same experimental paradigm as discussed above. However, we do not consider differences between pre- and post-test reliable because of a number of potentially confounding factors: for example, stiffness of the joints prior to operation, anxiety, etc. In fact the direction of the difference, if one existed, was in favor of post operation performance.

The basic experimental procedure in this study (termed Experiment 1) was, with one exception, identical to that employed in our preliminary work. Patients performed 12 preselected, constrained and passive trials into one of three movement sectors (see the caption of Figure 1 for details). Absolute (unsigned), constant (signed), and variable (the standard deviation around the mean constant error) errors were collapsed across sectors and analyzed in a 3 (movement conditions) x 3 (movement sector) analysis of variance. The main effect of movement conditions was significant for absolute and variable error only, $F(2, 24) = 12.30, p < .001$, and $F(2, 24) = 3.93, p < .05$, respectively. For absolute error, preselected movements were superior to passive and constrained, which were not different from each other (see Figure 1). A similar pattern of results obtained for variable error. In this case preselected was superior to passive but not constrained conditions, although the latter two were not different from each other.

Neither the sectors' main effect nor the interaction of sectors and conditions was significant for any of the dependent variables. The superiority of preselection over constrained and passive conditions shown in Figure 1 replicates much of our previous work and has been discussed in detail elsewhere (Jones, 1974; Kelso, 1977; Kelso & Stelmach, 1976). But the most interesting finding for the present discussion is the level of error in constrained and passive conditions. It is quite obvious that the patients in this study compare favorably with their counterparts in our preliminary experiment; more importantly, they perform within normal ranges. This is a fascinating finding, particularly in light of the classical role given by most physiologists and psychologists to joint receptors in the perception of movement and position (Mountcastle, 1968; Holand, 1978; Skoglund, 1956; Somjen, 1972). That is, "classical" conceptions of kinesthesis are built upon the angular specificity viewpoint—a contrary notion to very recent physiological work and obviously at variance with our data.
But what are the alternatives to joint receptors? Whether tactile information is sufficient to account for the performance of joint replacement patients is open to question. Goldsheider's (1889) work in which the skin was anesthetized via an AC electric current revealed no disturbing effects on movement perception. More recently, however, the Swedish surgeon Moberg (1972), in a unique patient, has shown that although joint receptor information was unavailable, perception of passive motion and position was preserved with only skin receptors in function. Another alternative is that cutaneous inputs facilitate access to the central nervous system by muscle receptors. If this is the case, a strong argument could be generated for the role of muscle receptors in the conscious appreciation of movement—a stance that is receiving increasing support (Matthews, 1977).

We should note that patients in previous experiments had several sources of information available to them that may have assisted accurate movement production. Patients knew, for example, that the starting position of the finger remained the same throughout testing. Thus they could use other information—such as duration or velocity—as a means for arriving at the correct final position. We examined this proposition by considering performance under conditions where the starting position changed for the reproduction movement, thereby disrupting either the amplitude moved or the final end position reached. Under one condition the patient was asked to produce the final position, while another condition required the patient to reproduce the same amplitude or distance (see Figure 2 for details). For absolute and constant error there was a significant interaction between movement conditions and starting position, $F(1, 12) = 7.76, p < .02$ and $F(1, 12) = 11.27, p < .01$, respectively. It is clear that location is superior overall to amplitude and that the effect is magnified at the extreme starting position. Interestingly, amplitude performance is biased in the direction of the final position presented. Thus while location performance is hardly affected by changes in starting position, amplitude performance appears to reflect a bias to reproduce location. This finding suggests rather strongly that location is the important "code"; even though instructed to reproduce amplitude, the motor system appears to be optimally organized for achieving final position. The latter, we emphasize, does not crucially depend upon slowly adapting joint receptors. Indeed, in earlier work on normal subjects a very similar finding was obtained between amplitude and location when both joint and cutaneous inputs were removed (Kelso, 1977).

One way of interpreting these data is that there is a location code based on information provided by some type of peripheral receptor or set of receptors. Reproduction of location may then be viewed as a matching of receptor inputs to the stored referent or spatial code. Reproduction of distance, however, is much more difficult in that the change in starting position requires an additional subtractive process relative to the spatial code. Thus to reproduce accurately, a new spatial code must somehow be derived to take into account the change in starting position (Stelmach & McCracken, 1978).

An alternative explanation, and one that has gained status in recent papers (Bahill & Stark, 1979; Bizzi, Dev, Morasso, & Polit, 1978; Kelso, 1977), takes advantage of the natural physical properties such as damping, stiffness, and inertial resistance that are inherent in neuromuscular control
systems. Typically, muscle-joint linkages are viewed as homeomorphic vibratory systems, the most specific example being a mass-spring (Asatriyan & Fel'dman, 1965; Fel'dman, 1966). Our findings may be interpreted as displaying an important characteristic of a mass-spring system, namely that of equifinality (von Bertalanffy, 1973). That is, despite changes in initial conditions (displacement of a limb to a new starting position, mechanical perturbations), a mass-spring system will always reach an invariant final position or equilibrium point, determined only by the parameter specifications. For example, Polit and Bizzi (1978) in their recent work, trained monkeys to point with an unseen arm to target lights. At random intervals and prior to pointing, a torque motor displaced the arm further away from, closer to, or even beyond the target. In spite of such alterations of kinesthetic input the final position was always reached. These data suggest that final position is determined via the specification of stiffness and damping parameters that establish an equilibrium point between opposing pairs of muscles. That kinesthetic information is not crucial to this type of mechanism is revealed by identical results in animals who have undergone bilateral dorsal rhizotomy.

An argument can be made, therefore, that the neuromuscular organization underlying achievement of location has the features of a vibratory system. Note that the two viewpoints discussed here differ considerably in perspective. The former argues that the kinematic details of movements are represented in a spatial code. Thus location as the endpoint of a movement may be described in reference to some internal coordinate system. While this may be a legitimate description, it refers to kinematics and not dynamics. The point should be clear when it is realized that it is the dynamics (e.g., force, viscosity, etc.) that determine the movement kinematics. From a dynamic perspective then, terminal location is equated with the steady state of a system and is determined only by the parameters selected. Nowhere is there a need to represent kinematic details: it is in the nature of a vibratory system to achieve equilibrium. While the present experiments cannot entirely differentiate these alternatives, the parsimony of the dynamic description is appealing. The vibratory system viewpoint clearly negates reliable reproduction of distance (a kinematic detail) from variable initial conditions. Furthermore, that accurate achievement of final position can obtain in the absence of slowly adapting joint afferents muddies the common view that angular specific receptors contribute to the development of a spatial code.

Finally, it behooves us to consider briefly the theoretical role that joint receptors may play in the control of movement. One possibility arises out of Grigg's (1976) work showing that a sizable proportion of afferents in cat medial nerve fire as a function of the degree of torque developed at a fixed joint position. This finding suggests that muscular contractions activate joint neurons and that joint afferents can function as load detectors. But another, more intriguing notion with potentially broad theoretical consequences may be found in a diversion away from traditional views of peripheral mechanoreceptors. Such receptors have typically been regarded as contributing—or not contributing—specific types of kinematic information (e.g., position, rate, acceleration) to higher brain centers for use in control and termination of movements. Suppose, however, that peripheral receptor information is not dimension-specific; rather it serves merely to bias interneuronal pools in the spinal cord so as to lower the threshold at
which signals may be generated to the musculature. Thus the function of mechanoreceptors is simply to "tune" the interneuronal pool so that central command pulses may have an optimal facilitatory effect on the muscles served by that pool. The research of Aizerman and his colleagues (Aizerman & Andreeva, 1968; Chernov, 1968; Litvintsev, 1972) has provided evidence for this viewpoint with reference to muscle spindle function in such activities as postural adjustment, pain avoidance, and precision aiming. For example, if a person in a relaxed standing position is pushed in the back, the spindles in the gastrocnemius and hamstring muscle groups will be stretched. An undifferentiated supraspinal command pulse results in the activation of only those muscles whose spindle inputs define the background state of the interneuronal pool. Consequently, selective activation of the stretched muscles automatically gives rise to forces that preserve vertical posture. It seems imminently possible that the control system may also use cutaneous and joint inputs to serve similar "tuning" functions. In fact, when we realize that human stretch reflex function is virtually eliminated when joint and cutaneous information is removed (Marsden, Merton, & Morton, 1972), this hypothesis gains respectability. The obvious beauty of such a system is that the brain does not have to select which muscles to contract; rather, muscles are activated by virtue of the dynamic state of the interneuronal pools.

REFERENCES

Asatryan, D. G., & Fel'dman, A. G. Functional tuning of the nervous system with control of movement or maintenance of a steady posture—I. Mechanographic analysis of the work of the joint on execution of a postural task. Biophysics, 1965, 10, 925-935.
Chernov, V. I. Control over single muscles or a pair of muscle antagonists under conditions of precision search. Automation and Remote Control, 1968, 29, 1090-1101.
Fel'dman, A. G. Functional tuning of the nervous system during control of movement or maintenance of a steady posture—III. Mechanographic analysis of the execution by man of the simplest motor tasks. Biophysics, 1966,

Grillner, S. Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 1975, 55, 247-304.

Lynn, B. Somatosensory receptors and their central nervous system connections. Annual Reviews of Physiology, 1975, 105-127.

Merton, P. A. Human position sense and sense of effort. Homeostasis and
feedback mechanisms. 18th Symposium of Society of Experimental Biology. 1964, 18, 387-400.
Moberg, E. Fingers were made before forks. The Hand, 1972, 4, 201-206.
Figure 1. Mean absolute error in degrees for joint replacement patients as a function of movement extent. Patients performed 12 preselected and 12 constrained movements whose order was randomly defined. The starting position of the finger on all trials was 20 degrees flexion and the maximum movement seldom exceeded 65 degrees flexion. Patients were instructed to distribute their selections as much as possible within a sector. Preselected movements always came first in the series and constrained movements were yoked to them in order to make an analysis of errors possible. In addition, a passive condition was included in which, following the verbal command "ready," the patient was moved passively to a stop and then returned to the starting position. In all three movement conditions, patients reproduced actively. Although velocities were not measured, the movements in all cases were relatively slow, with an approximate range of 20 to 30 degrees per sec. Time at the endpoint of the movement was held constant at 2 sec.

Figure 2. Mean absolute (unsigned) and constant (signed) error for joint replacement patients as a function of starting position. Under one condition (location) the patient was asked to reproduce final position, while another condition required the patient to reproduce the same amplitude or distance. The same patients participated in this study as in Experiment 1. The criterion movement was presented from a starting position of 20 degrees flexion and was either 35, 45, or 50 degrees flexion, the latter being randomly defined. Patients moved actively to mechanical stops that specified these movements and then were returned to a starting position that was either 5 degrees (SP₁) or 15 degrees (SP₂) beyond the original starting position (i.e., in 15 or 5 degrees flexion). They then reproduced either the final position or the amplitude of movement. Patients performed 12 trials on each condition, with order of position counterbalanced. There were, therefore, two trials on each criterion movement--starting position combination, which were collapsed for inspection of mean absolute and constant errors.
EXPERIMENT I

- PRESELECTED
- CONSTRAINED \(N = 13 \)
- PASSIVE

Mean absolute error in degrees

Short (0-15°) | Medium (15.1°-30°) | Long (30.1°-45°)

Figure 1.
EXPERIMENT II

![Bar charts for mean absolute error and mean constant error in degrees for starting positions SP1 (-5°) and SP2 (-15°).]

Figure 2.

(This figure accompanies the preceding paper.)