Neural Activation of Semantic Networks Contribute to Reading Comprehension Skill

Kayleigh Ryherd¹, Emily Baron², Kaja Jasinska², W. Einar Mencl², Nicole Landi¹, 2, 3

¹University of Connecticut, Dept. of Psychology & Language Plasticity IGERT; ²Haskins Laboratories; ³Yale Child Studies Center

Introduction

About 10% of individuals exhibit reading comprehension (RC) deficits despite intact cognitive and phonological processing.

We propose that these deficits may be due to weak semantic processing systems for printed and spoken language comprehension.

Here we examine neural activity underlying both word- and passage-level processing in the visual and auditory modalities and its relation to RC using Partial Least Squares analysis (PLS).

Methods & Hypotheses

Two fMRI tasks (N = 28, M Age = 16.90, 18 F):
- Word Task (4 event types) event-related
 - Visual word: Printed real words, e.g. roof
 - Spoken word: Spoken real words, e.g. “post”
 - False font: Printed symbols, e.g. “CH”
 - Vocoded speech
- Story Task (2 block types) blocked
 - Excerpts of a narrative presented aurally (Audio condition) or visually (Visual condition)
- Behavioral Measures
 - Kaufman Test of Educational Achievement (KTEA) reading comprehension

Task PLS Hypotheses:
1) Print and speech conditions should dissociate across tasks.
2) Story and Word tasks should dissociate.

Behavioral PLS Hypotheses:
3) RC is related to activation in semantic areas during passage comprehension, regardless of modality.
4) RC is related to the difference in activation in semantic areas during written word and passage comprehension.

Results I: Task PLS

Hypothesis 1

Blue regions show more activation during visual conditions: fusiform gyri/visual wordform area (VWFA), extrastriate cortex. Red regions show more activation during auditory conditions: superior temporal gyrus (STG), middle temporal gyrus (MTG).

53.23% of covariance, p < 0.001

Hypothesis 2

Blue regions show more activation during the word task: medial fusiform, anterior cingulate cortex (ACC). Red regions show more activation during the story task: right angular gyrus (rAG), bilateral anterior temporal lobe (ATL), extrastriate cortex.

39.63% of covariance, p < 0.001

Results II: Behavioral PLS

Hypothesis 3

Blue regions show areas positively correlated with RC: anterior temporal pole (ATP), middle temporal gyrus (MTG), angular gyrus (AG). Red regions show areas negatively correlated with RC: anterior cingulate cortex (ACC).

84.68% of covariance, p < 0.001

Hypothesis 4

Blue regions show areas positively correlated with RC: visual wordform area (VWFA), extrastriate cortex, thalamus, hippocampus. Red regions show areas negatively correlated with RC: superior temporal gyrus (STG), insula.

57.71% of covariance, p < 0.001

Discussion

1) Visual areas (VWFA, extrastriate) do activate differently than auditory processing regions (STG) in visual vs. auditory conditions of both tasks.
2) Areas involved in comprehending sentences (ATL, rAG) activate more in the story task, and regions involved in single-word comprehension (medial fusiform) and switching among stimuli (ACC) activate more in the word task.

Behavioral PLS
3) Better comprehenders show more semantic activation (MTG) in the passage task regardless of modality.
4) Better comprehenders show more visual activation (VWFA, occipital) in both written passage and word tasks. Poorer comprehenders show phonological processing (STG) in response to both written tasks.

References