Neural Representations for Spoken and Written Language In Beginning Readers: Insights from fNIRS and fMRI Neuroimaging

Kaja Jasińska¹, Bonnie Buis¹, Bryan Cort¹, Peter Molfese², Einar Mencl¹, Nicole Landi¹, ²,3, Heather Borfeld¹, ², Ken Pugh¹, ², ³

¹Haskins Laboratories, ²University of Connecticut, ³Yale University – Child Study Center

RESEARCH QUESTIONS

How does the young brain’s neural circuitry for language support the development of skilled reading?

- Young children learning to read are already proficient users of spoken language
- Left Inferior Frontal Gyrus (LIFG) and left Superior Temporal Gyrus (STG) are involved in relating phonological information to printed text, phonological decoding and segmentation during reading, and semantic word retrieval¹³
- Left supramarginal gyrus (SMG) and left fusiform gyrus (VVFA) become increasingly specialized for aspects of printed word processing²⁴

METHODS

Participants

<table>
<thead>
<tr>
<th>Age Group</th>
<th>N</th>
<th>Ages (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Literacy</td>
<td>28</td>
<td>3.5-4.5y</td>
</tr>
<tr>
<td>Emergent Literacy</td>
<td>24</td>
<td>4.5-6.5y</td>
</tr>
</tbody>
</table>

Neuroimaging

- Near Infrared Spectroscopy (fNIRS) Neuroimaging: Hitachi ETG 4000 and Shimadzu LABNIRS
- fMRI: 3T Scanner (N=11, older emergent literacy group only)

Task

Spoken and written words in a repeating sequence, 6 trials/block

Analysis

- NIRS: Data from 44 channels were preprocessed and analyzed using GLM in Statistical Parametric Mapping for NIRS, Ver. 4⁵.
- MRI: Data were preprocessed and analyzed with the Analysis for Functional Neuroimages (AFNI) package using 3dMVM⁶
- Correlations computed between beta values from HbO and HbR NIRS analyses and the average beta values of MRI voxels within 3 cm of each NIRS channel MRI locations

REFERENCES

*CORRESPONDING AUTHOR: kaja.jasinska@yale.edu
www.haskins.yale.edu/staff/jasinska

CONCLUSION

- Patterns of neural activation that support spoken language processing change over development as a child learns to read
- Pre-literacy children show greater activation in L STG for speech
- Emergent literacy children show greater L IFG activation for speech and greater L IFG and L STG activation for print than speech
- Differences in neural processing of print and speech reveal how the developing brain allocates neural resources towards reading
- Correlated MRI and NIRS signals in language brain regions indicate these different neuroimaging methods reliably measure brain activation during language processing and support NIRS neuroimaging for even younger children for whom MRI may be difficult to acquire

FUNDING: NIH P01 HD001994-46 (J. Rueckl)