Articulatory and acoustic evidence for syllable structure effects on reaction times

Tine Mooshammer
Haskins Labs, New Haven CT

Louis Goldstein
Haskins Labs, New Haven CT & USC Los Angeles, CA

Mark Tiede
Haskins Labs, New Haven CT & MIT, Cambridge, MA

Hosung Nam & Man Gao
Haskins Labs, New Haven CT

In memoriam
Cathe Browman
Introduction: Syllable structure and planning time

Earlier study (Nam 2007):
- longer reaction times for VC than for CV syllables

Experiment:
- combinations of P, T, K and I, A
- presented on a screen in vertical order (in order to avoid lexical or syllabary effects)
- simple reading task
- 2 Korean and 2 AmEngl. subjects

Figure 9. Mean of reaction time for each syllable type. Oblique-lined bars are for CV type and black bars for VC type. RT denotes reaction time.
Introduction: Nam (2007)

• modeled by settling time differences for CV vs. VC phasing
• Assumptions
 • basic units: gestures
 • gestures are phased with each other ('glue')
 • limb coordination: two preferred modes
 • in-phase (0°) (most stable)
 • anti-phase (180°)
 • other modes can be learned
• phasing of planning oscillators within syllables:
 • CV: in-phase (0°)
 • VC and CC: anti-phase (180°)
Introduction: C-center effect

Figure 3. Gestural representation from X-ray micro-beam data in Honorof and Browman (1995) for consonant vowel sequences in ‘sayed’, ‘spayed’
Introduction: Nam (2007)

Nam’s simulation study:
- C: constriction (CLO) and release (REL) gesture
 (see e.g. Steriade 1993, Browman 1994)
- anti-phase between CLO and REL

CV: CLO–––– REL V
VC: V ……… CLO–––– REL

==> C-center effect for CLO-REL-V
Introduction: settling time

- settling time: time it takes for two planning oscillators to show a specific mode (here in-phase)
- settling time depends how constrained the phasing relations are and on the type (in-phase settles faster)
- the less constrained the longer it takes for the oscillators to settle

⇒ VC takes longer to settle compared to CV
⇒ longer planning and reaction times

- this also implies shorter latencies for complex onsets because of the even more constrained phasing relations
Introduction: cluster effect

Evidence for cluster effect:

- shorter latencies for clusters found in Kawamoto & Kello (1999), Kessler, Treiman & Mullinex (2002) and others

Rastle et al. (2005):

- delayed naming task
- cluster effect only for stops but not for fricatives
- explanation: shortening of consonants in clusters. For stops a shortening of closure duration causes an earlier acoustic onset (burst)

=> cluster effect only in the acoustic domain, not in the articulatory domain
Introduction: onset consonant

RT and type of onset consonant

- fricatives < sonorants < stops (e.g. Rastle et al. 2005, Kessler, Treiman & Mullinix 2002 and others)

- Explanation by Rastle et al.:
 - biomechanical and aerodynamic constraints of initial consonants
 - speaker anticipates higher/different aerodynamic demands for the fricative by initiating the movement earlier
Aims

- Replicating Nam’s results by acoustic and articulatory data
 - CV < VC
- testing the following predictions
 - CCV<CV(C) (cluster effect)
 - CV <CVC (coda effect)
- shorter RT for fricatives also for articulation?
Simple delayed naming task

Random delay:
- group1: 1000-1600 ms
- group2: 1000-2000 ms

Get ready ...

plate

GO!

plate
Postvocalic delayed naming task

Instruction:
Get ready (say “uh”) for detecting the onset of stops
Experiments

- **Acoustic-only**
 - simple and post-vocalic delayed naming
 - 20 speakers of American English (12 female, 8 male)
 - words with varying syllable structures:
 - V, VC, CV, CVC, CCV, CCVC
 - V: /ei/ (‘pay’) /i:/ (‘pea’)
 - C: /p, t, k, s, l/
 - clusters /sl, sp, st, sk/
 - group2: additionally /pl/

- **EMMA**
 - post-vocalic delayed naming only:
 - 4 speakers (F02, F09, F11, M02)
 - 3 sensors on the tongue, 2 on the lips, 1 on the lower incisors
 - additionally:
 - CCVC, CVCC with short vowels
 - clusters /pl, kl/
Labeling and measurements

- **LogEend**: from beep peak to the end of the stationary phase of the preceding vowel (only for post-vocalic condition)
- **LogAc**: from beep peak to the acoustic onset of the first sound

Additionally for EMMA:
- **LogG1on**: from beep peak to onset of first gesture (for /p/ measured at lip aperture signal)
- **DurG1**: Duration of the first gesture

/s, t, l/: tongue tip
/k, V/: tongue rear
/p/: lip aperture
Acoustic only results: syllable structure

Significant effects of **syllable structure** on reaction time (LogAc)

- VC>CV, CVC > CCV, CCVC
 - post-vocalic: $F(4, 76)=149$, $p<0.001$
 - simple: $F=(4, 76)=105$, $p<0.001$
- CV=CVC: no effect of coda consonant
Acoustic only results: onset type

Significant effects of **onset identity** on reaction time (LogAc)

- V, Plos, /l/ > /s/ /sC/
 - post-vocalic: $F(5, 95)=130$, $p<0.001$
 - simple: $F=(5, 95)=101$, $p<0.001$
- cluster effect caused by /s/?
Results acoustic only: cluster effect

Rastle et al. (2005): cluster effect only for stop+C clusters, not fricative + C (subset of data: 11 speakers)

- /p/>/s/, no cluster effect
 - post-vocalic: F(3, 30)=40, p<0.001
 - simple: F=(3, 30)=43, p<0.001 (not sig. for t-tests)
Articulatory results: CV vs. VC

(subset: only items with stops)

- LogG1on: later articulatory onset for VC syllables (sig. for speakers F02, F09 and M02)
- LogAc: later acoustic onset for VC syllables (sig. for speakers F09, F11 and M02)
- DurG1: longer durations of the initial gesture for VC syllables (sig. for all speakers) because vocalic gestures are generally slower
Articulatory results: fricative vs. stop

- acoustic only: RT for /s/ shorter than /l/ and stops
- BUT: no systematic effect for LogG1 on explained by:
 - /s/: target achievement after the acoustic onset
 - stops: target achievement before the acoustic onset
 - /l/: target achievement and acoustic onset at the same time
 ⇒ no anticipation of aerodynamic demands for the fricative (suggested by Rastle et al. 2005)
Articulatory results: clusters vs. singletons

- subset of data: only items starting with stops (e.g. *pain* vs. *play*)
- no systematic effects for onset complexity for acoustic and articulatory latencies
- similar results for clusters starting with /s/
Summary

- Syllable effects:
 - CV < VC in acoustic and articulatory domain (confirming Nam 2007)
 - No coda effect
 - No cluster effect (contrary to Rastle et al. 2005)

- Onset consonant:
 - Shorter acoustic latency for /s/ than for other consonants
 - But not in the articulatory domain
 - No planning effect but discrepancy between acoustic and articulatory onsets for different manners of articulation
Discussion: cluster effect?

Why couldn’t we replicate Rastle et al.’s results?

- cluster effect for stops but not for fricatives
- acoustic only (latencies in ms):

<table>
<thead>
<tr>
<th></th>
<th>stop</th>
<th>stop+l</th>
<th>fric.</th>
<th>fric.+C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rastle et al. (2005)</td>
<td>300</td>
<td>293</td>
<td>231</td>
<td>232</td>
</tr>
<tr>
<td>here: postvocalic DN</td>
<td>256</td>
<td>257</td>
<td>196</td>
<td>186</td>
</tr>
<tr>
<td>here: simple DN</td>
<td>341</td>
<td>320</td>
<td>273</td>
<td>270</td>
</tr>
</tbody>
</table>

- larger difference for simple DN task but
- here: only 11 subjects and smaller number of items
 - lack of statistical power
Discussion: cluster effect?

Articulatory domain

- only 4 speakers!!! postvocalic condition only

<table>
<thead>
<tr>
<th></th>
<th>stop</th>
<th>stop+l</th>
<th>fric.</th>
<th>fric.+C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rastle et al. (2005)</td>
<td>300</td>
<td>7</td>
<td>293</td>
<td>231</td>
</tr>
<tr>
<td>here: acoustic RT</td>
<td>291</td>
<td>6</td>
<td>285</td>
<td>232</td>
</tr>
<tr>
<td>here: articulatory RT</td>
<td>123</td>
<td>4</td>
<td>119</td>
<td>123</td>
</tr>
</tbody>
</table>

- articulatory difference small and inconsistent
 - 2 speakers stop>stop+l
 - 2 speakers stop<stop+l

- rather no cluster effect on the articulatory level
- more articulatory data needed!
Discussion: cluster effect?

Possible explanation for the missing cluster effect (and also missing coda effect):

? negative results in current study: because of delayed naming task
 (“all planning is already completed”)
BUT: persistent VC>CV differences point to a planning effect, which cannot be attributed word frequency

Right now: simple naming and picture naming tasks
Conclusion

- nice replication of Nam’s results
- first effort we know of to investigate these RT phenomena kinematically
- directions for further research:
 - simple naming and picture naming
Thanks for your attention

Acknowledgments
Thanks to Manisha Kulshreshta for running the experiments and assisting with the data analyses.
This work was supported by Grant NIH NIDCD DC008780.
Additional results articulation: clusters vs. singletons

• subset of data: only items starting with stops and short vowels (e.g. *kelp* vs. *clap*)

• for 3 speakers: tendency of shorter acoustic and articulatory RT for complex onsets

• but not significant
Word frequency

pay < ape (following word freq. pred.)
8.0 1.1 word freq.
tea < eat (contrary word freq. pred.)
3.2 6.7 word freq.
(word frequencies: log from Switchboard corpus)